
Chapter 17

Linked Data
Structures

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Nodes and Linked Lists
– Creating, searching

• Linked List Applications
– Stacks, queues, sets, hash tables

– Friend classes, alternatives

• Iterators
– Pointers as iterators

• Trees

17-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction

• Linked list

– Constructed using pointers

– Grows and shrinks during run-time

– Doubly Linked List : A variation with pointers in both
directions

• Trees also use pointers

• Pointers backbone of such structures

– Use dynamic variables

• Standard Template Library

– Has predefined versions of some structures

17-3Copyright © 2016 Pearson Inc. All rights reserved.

Approaches

• Three ways to handle such data structures:
1. C-style approach: global functions and

structs with everything public

2. Classes with private member variables and
accessor and mutator functions

3. Friend classes

• Linked lists will use method 1

• Stacks, queues, sets, and hash tables will use
method 2

• Trees will use method 3

17-4Copyright © 2016 Pearson Inc. All rights reserved.

Nodes and Linked Lists

• Linked list

– Simple example of "dynamic data structure"

– Composed of nodes

• Each "node" is variable of struct or class
type that’s dynamically created with new

– Nodes also contain pointers to other nodes

– Provide "links"

17-5Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.1 Nodes and Pointers

17-6Copyright © 2016 Pearson Inc. All rights reserved.

Node Definition

• struct ListNode
{

string item;
int count;
ListNode *link;

};
typedef ListNode* ListNodePtr;

• Order here is important!
– Listnode defined 1st, since used in typedef

• Also notice "circularity"

17-7Copyright © 2016 Pearson Inc. All rights reserved.

Head Pointer

• Box labeled "head" not a node:
ListNodePtr head;

– A simple pointer to a node

– Set to point to 1st node in list

• Head used to "maintain" start of list

• Also used as argument to functions

17-8Copyright © 2016 Pearson Inc. All rights reserved.

Example Node Access

• (*head).count = 12;
– Sets count member of node pointed to by
head equal to 12

• Alternate operator, ->
– Called "arrow operator"

– Shorthand notation that combines * and .

– head->count = 12;
• Identical to above

• cin >> head->item
– Assigns entered string to item member

17-9Copyright © 2016 Pearson Inc. All rights reserved.

End Markers

• Use NULL or nullptr (in C++11) for node
pointer

– Considered "sentinel" for nodes

– Indicates no further "links" after this node

• Provides end marker similar to how we
use partially-filled arrays

17-10Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.2 Accessing Node Data

17-11Copyright © 2016 Pearson Inc. All rights reserved.

Linked List

• Lists as illustrated called linked lists

• First node called head

– Pointed to by pointer named head

• Last node special also

– It’s member pointer variable is NULL (or nullptr in
C++11)

– Easy test for "end" of linked list

17-12Copyright © 2016 Pearson Inc. All rights reserved.

Linked List Class Definition

• class IntNode
{
public:

IntNode() { }
IntNode(int theData, IntNode* theLink)

: data(theData), link(theLink) { }
IntNode* getLink() const {return link;}
int getData() const {return data;}
void setData(int theData) {data = theData;}
void setLink(IntNode* pointer) {link=pointer;}

private:
int data;
IntNode *link;

};
typedef IntNode* IntNodePtr;

17-13Copyright © 2016 Pearson Inc. All rights reserved.

Linked List Class

• Notice all member function definitions are
inline

– Small and simple enough

• Notice two-parameter constructor

– Allows creation of nodes with specific data
value and specified link member

– Example:
IntNodePtr p2 = new IntNode(42, p1);

17-14Copyright © 2016 Pearson Inc. All rights reserved.

Create 1st Node

• IntNodePtr head;
– Declares pointer variable head

• head = new IntNode;
– Dynamically allocates new node

– Our 1st node in list, so assigned to head

• head->setData(3);
head->setLink(NULL);
– Sets head node data

– Link set to NULL since it’s the only node!

17-15Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.3
Adding a Node
to the Head of

a Linked List

17-16Copyright © 2016 Pearson Inc. All rights reserved.

Lost Nodes Pitfall:
Display 17.5 Lost Nodes

17-17Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.6 Inserting in the Middle of a
Linked List (1 of 2)

17-18Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.6 Inserting in the Middle of a
Linked List (2 of 2)

17-19Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.7
Removing

a Node

17-20Copyright © 2016 Pearson Inc. All rights reserved.

Searching a Linked List

• Function with two arguments:
IntNodePtr search(IntNodePtr head, int target);
//Precondition: pointer head points to head of
//linked list. Pointer in last node is NULL.
//If list is empty, head is NULL
//Returns pointer to 1st node containing target
//If not found, returns NULL

• Simple "traversal" of list

– Similar to array traversal

17-21Copyright © 2016 Pearson Inc. All rights reserved.

Pseudocode for search Function

• while (here doesn’t point to target node or
last node)

{
Make here point to next node in list

}
if (here node points to target)

return here;
else

return NULL;

17-22Copyright © 2016 Pearson Inc. All rights reserved.

Algorithm for search Function

• while (here->getData() != target &&
here->getLink() != NULL)

here = here->getLink();

if (here->getData() == target)
return here;

else
return NULL;

• Must make "special" case for empty list
– Not done here

17-23Copyright © 2016 Pearson Inc. All rights reserved.

Doubly Linked Lists

• What we just described is a singly linked list

– Can only follow links in one direction

• Doubly Linked List

– Links to the next node and another link to the previous
node

– Can follow links in either direction

– NULL signifies the beginning and end of the list

– Can make some operations easier, e.g. deletion since we
don’t need to search the list to find the node before the
one we want to remove

17-24Copyright © 2016 Pearson Inc. All rights reserved.

Doubly Linked Lists

Copyright © 2016 Pearson Inc. All rights reserved. 17-25

class DoublyLinkedIntNode

{

public:

DoublyLinkedIntNode (){}

DoublyLinkedIntNode (int theData, DoublyLinkedIntNode* previous,

DoublyLinkedIntNode* next)

: data(theData), nextLink(next), previousLink(previous) {}

DoublyLinkedIntNode* getNextLink() const { return nextLink; }

DoublyLinkedIntNode* getPreviousLink() const { return previousLink; }

int getData() const { return data; }

void setData(int theData) { data = theData; }

void setNextLink(DoublyLinkedIntNode* pointer) { nextLink = pointer; }

void setPreviousLink(DoublyLinkedIntNode* pointer)

{ previousLink = pointer; }

private:

int data;

DoublyLinkedIntNode *nextLink;

DoublyLinkedIntNode *previousLink;

};

typedef DoublyLinkedIntNode* DoublyLinkedIntNodePtr;

Adding a Node to the Front of a
Doubly Linked List (1 of 2)

Copyright © 2016 Pearson Inc. All rights reserved. 17-26

Adding a Node to the Front of a
Doubly Linked List (2 of 2)

Copyright © 2016 Pearson Inc. All rights reserved. 17-27

Deleting a Node from a Doubly
Linked List

• Removing a node requires updating references
on both sides of the node we wish to delete

• Thanks to the backward link we do not need a
separate variable to keep track of the previous
node in the list like we did for the singly linked
list

– Can access via node->previous

17-28Copyright © 2016 Pearson Inc. All rights reserved.

Deleting a Node from a Doubly
Linked List (1 of 2)

17-29Copyright © 2016 Pearson Inc. All rights reserved.

Deleting a Node from a Doubly
Linked List (2 of 2)

17-30Copyright © 2016 Pearson Inc. All rights reserved.

Stacks

• Stack data structure:
– Retrieves data in reverse order of how stored

– LIFO – last-in/first-out

– Think of like "hole in ground"

• Stacks used for many tasks:
– Track C++ function calls

– Memory management

• Our use:
– Use linked lists to implement stacks

17-31Copyright © 2016 Pearson Inc. All rights reserved.

A Stack—Graphic:
Display 17.12 A Stack

17-32Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.17 Interface File for a Stack
Template Class (1 of 2)

17-33Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.17 Interface File for a Stack
Template Class (2 of 2)

17-34Copyright © 2016 Pearson Inc. All rights reserved.

Stack Template Class Driver:
Display 17.18 Program Using the Stack Template

Class (1 of 3)

17-35Copyright © 2016 Pearson Inc. All rights reserved.

Stack Template Class Driver:
Display 17.18 Program Using the Stack Template

Class (2 of 3)

17-36Copyright © 2016 Pearson Inc. All rights reserved.

Stack Template Class Driver:
Display 17.18 Program Using the Stack Template

Class (3 of 3)

17-37Copyright © 2016 Pearson Inc. All rights reserved.

Stack Push and Pop

• Adding data item to stack  push

– Considered "pushing" data onto stack

– Recall: goes to "top" of stack

• Removing data item from stack  pop

– Considered "popping" item off stack

– Recall: removed from "top" of stack

17-38Copyright © 2016 Pearson Inc. All rights reserved.

Queues

• Another common data structure:

– Handles data in first-in/first-out manner
(FIFO)

– Items inserted to end of list

– Items removed from front

• Representation of typical "line" forming

– Like bank teller lines, movie theatre
lines, etc.

17-39Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.20 Interface File for a Queue
Template Class (1 of 3)

17-40Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.20 Interface File for a Queue
Template Class (2 of 3)

17-41Copyright © 2016 Pearson Inc. All rights reserved.

Display 17.20 Interface File for a Queue
Template Class (3 of 3)

17-42Copyright © 2016 Pearson Inc. All rights reserved.

Queue Template
Class Driver:

Display 17.21
Program Using

the Queue
Template Class

17-43Copyright © 2016 Pearson Inc. All rights reserved.

Hash Tables

• A hash table or hash map is a data structure
that efficiently stores and retrieves data from
memory

• Here we discuss a hash table that uses an
array in combination with singly linked lists

• Uses a hash function

– Maps an object to a key

– In our example, a string to an integer

17-44Copyright © 2016 Pearson Inc. All rights reserved.

Simple Hash Function for Strings

• Sum the ASCII value of every character in the
string and then compute the modulus of the
sum using the size of the fixed array.

17-45Copyright © 2016 Pearson Inc. All rights reserved.

int computeHash(string s)

{

int hash = 0;

for (int i = 0; i < s.length(); i++)

{

hash = hash + s[i];

}

return hash % SIZE; // SIZE = 10 in example

}

Example: "dog" = ASCII 100, 111, 103

Hash = (100 + 111 + 103) % 10 = 4

Hash Table Idea

• Storage

– Make an array of fixed size, say 10

– In each array element store a linked list

– To add an item, map (i.e. hash) it to one of the 10
array elements, then add it to the linked list at
that location

• Retrieval

– To look up an item, determine its hash code then
search the linked list at the corresponding array
slot for the item

17-46Copyright © 2016 Pearson Inc. All rights reserved.

Constructing a Hash Table

17-47Copyright © 2016 Pearson Inc. All rights reserved.

Interface File for a HashTable Class
(1 of 2)

17-48Copyright © 2016 Pearson Inc. All rights reserved.

1 // This is the header file hashtable.h. This is the interface

2 // for the class HashTable, which is a class for a hash table

3 // of strings.

4 #ifndef HASHTABLE_H

5 #define HASHTABLE_H

6 #include <string>

7 #include "listtools.h"

The library "listtools.h" is the linked list library

interface from Display 17.14.

8 using LinkedListSavitch::Node;

9 using std::string;

10 namespace HashTableSavitch

11 {

12 const int SIZE = 10; // Maximum size of the hash table array

Interface File for a HashTable Class
(2 of 2)

17-49Copyright © 2016 Pearson Inc. All rights reserved.

13 class HashTable

14 {

15 public:

16 HashTable(); // Initialize empty hash table

17 // Normally a copy constructor and overloaded assignment

18 // operator would be included. They have been omitted

19 // to save space.

20 virtual ~HashTable(); // Destructor destroys hash table

21 bool containsString(string target) const;

22 // Returns true if target is in the hash table,

23 // false otherwise

24 void put(string s);

25 // Adds a new string to the hash table

26 private:

27 Node<string> *hashArray[SIZE]; // The actual hash table

28 static int computeHash(string s); // Compute a hash value

29 }; // HashTable

30 } // HashTableSavitch

31 #endif // HASHTABLE_H

Implementation File for Hash Table
Class (1 of 3)

17-50Copyright © 2016 Pearson Inc. All rights reserved.

1 // This is the implementation file hashtable.cpp.

2 // This is the implementation of the class HashTable.

3 #include <string>

4 #include "listtools.h"

5 #include "hashtable.h"

6 using LinkedListSavitch::Node;

7 using LinkedListSavitch::search;

8 using LinkedListSavitch::headInsert;

9 using std::string;

10 namespace HashTableSavitch

11 {

12 HashTable::HashTable()

13 {

14 for (int i = 0; i < SIZE; i++)

15 {

16 hashArray[i] = NULL;

17 }

18 }

Implementation File for Hash Table
Class (2 of 3)

17-51Copyright © 2016 Pearson Inc. All rights reserved.

19 HashTable::~HashTable()

20 {

21 for (int i=0; i<SIZE; i++)

22 {

23 Node<string> *next = hashArray[i];

24 while (next != NULL)

25 {

26 Node<string> *discard = next;

27 next = next->getLink();

28 delete discard;

29 }

30 }

31 }

32 int HashTable::computeHash(string s)

33 {

34 int hash = 0;

35 for (int i = 0; i < s.length(); i++)

36 {

37 hash = hash + s[i];

38 }

39 return hash % SIZE;

40 }

Implementation File for Hash Table
Class (3 of 3)

17-52Copyright © 2016 Pearson Inc. All rights reserved.

41 void HashTable::put(string s)

42 {

43 int hash = computeHash(s);

44 if (search(hashArray[hash], s)==NULL)

45 {

46 // Only add the target if it's not in the list

47 headInsert(hashArray[hash], s);

48 }

49 }

50 } // HashTableSavitch

Hash Table Demonstration

17-53Copyright © 2016 Pearson Inc. All rights reserved.

1 // Program to demonstrate use of the HashTable class

2 #include <string>

3 #include <iostream>

4 #include "hashtable.h"

5 #include "listtools.cpp"

6 #include "hashtable.cpp"

7 using std::string;

8 using std::cout;

9 using std::endl;

10 using HashTableSavitch::HashTable;

11 int main()

12 {

13 HashTable h;

14 cout << "Adding dog, cat, turtle, bird" << endl;

15 h.put("dog");

16 h.put("cat");

17 h.put("turtle");

18 h.put("bird");

19 cout << "Contains dog? " << h.containsString("dog") << endl;

20 cout << "Contains cat? " << h.containsString("cat") << endl;

21 cout << "Contains turtle? " << h.containsString("turtle") << endl;

22 cout << "Contains bird? " << h.containsString("bird") << endl;

23 cout << "Contains fish? " << h.containsString("fish") << endl;

24 cout << "Contains cow? " << h.containsString("cow") << endl;

25 return 0;

26 }

SAMPLE DIALOGUE
Adding dog, cat, turtle, bird

Contains dog? 1

Contains cat? 1

Contains turtle? 1

Contains bird? 1

Contains fish? 0

Contains cow? 0

Hash Table Efficiency
• Worst Case

– Every item inserted into the table has the same hash key,
the find operation may have to search through all items
every time (same performance as a linked list)

• Best Case

– Every item inserted into the table has a different hash key,
the find operation will only have to search a list of size 1,
very fast

• Can decrease the chance of collisions with a better
hash function

• Tradeoff: Lower chance of collision with bigger hash
table, but more wasted memory space

17-54Copyright © 2016 Pearson Inc. All rights reserved.

Set Template Class

• A set is a collection of elements in which no
element occurs more than once

• We can implement a simple set that uses a
linked list to store the items in the set

• Fundamental set operations we will support:

– Add

– Contains

– Union

– Intersection
17-55Copyright © 2016 Pearson Inc. All rights reserved.

Example

Interface File for a Set Template
Class (1 of 2)

17-56Copyright © 2016 Pearson Inc. All rights reserved.

1 // This is the header file set.h. This is the interface

2 // for the class Set, which is a class for a generic set.

3 #ifndef SET_H

4 #define SET_H

5 #include "listtools.h"

"listtools.h" is the linked list library interface from Display 17.14.

6 using LinkedListSavitch::Node;

7 namespace SetSavitch

8 {

9 template<class T>

10 class Set

11 {

12 public:

13 Set() { head = NULL; } // Initialize empty set

14 // Normally a copy constructor and overloaded assignment

15 // operator would be included. They have been omitted

16 // to save space.

17 virtual ~Set(); // Destructor destroys set

Interface File for a Set Template
Class (2 of 2)

17-57Copyright © 2016 Pearson Inc. All rights reserved.

18 bool contains(T target) const;

19 // Returns true if target is in the set, false otherwise

20 void add(T item);

21 // Adds a new element to the set

22 void output();

23 // Outputs the set to the console

24 Set<T>* setUnion(const Set<T>& otherSet);

25 // Union calling object's set with otherSet

26 // and return a pointer to the new set

27 Set<T>* setIntersection(const Set<T>& otherSet);

28 // Intersect calling object's set with otherSet

29 // and return a pointer to the new set

30 private:

31 Node<T> *head;

32 }; // Set

33 } // SetSavitch

34 #endif // SET_H

Implementation File for a Set
Template Class (1 of 4)

17-58Copyright © 2016 Pearson Inc. All rights reserved.

1 // This is the implementation file set.cpp.

2 // This is the implementation of the class Set.

3 #include <iostream>

4 #include "listtools.h"

5 #include "set.h"

6 using std::cout;

7 using std::endl;

8 using LinkedListSavitch::Node;

9 using LinkedListSavitch::search;

10 using LinkedListSavitch::headInsert;

11 namespace SetSavitch

12 {

13 template<class T>

14 Set<T>::~Set()

15 {

16 Node<T> *toDelete = head;

17 while (head != NULL)

18 {

19 head = head->getLink();

20 delete toDelete;

21 toDelete = head;

22 }

23 }

Implementation File for a Set
Template Class (2 of 4)

17-59Copyright © 2016 Pearson Inc. All rights reserved.

24 template<class T>

25 bool Set<T>::contains(T target) const

26 {

27 Node<T>* result = search(head, target);

28 if (result == NULL)

29 return false;

30 else

31 return true;

32 }

33 void Set<T>::output()

34 {

35 Node<T> *iterator = head;

36 while (iterator != NULL)

37 {

38 cout << iterator->getData() << " ";

39 iterator = iterator->getLink();

40 }

41 cout << endl;

42 }

Implementation File for a Set
Template Class (3 of 4)

17-60Copyright © 2016 Pearson Inc. All rights reserved.

43 template<class T>

44 void Set<T>::add(T item)

45 {

46 if (search(head, item)

==NULL)

47 {

48 // Only add the target if

it's not in the list

49 headInsert(head, item);

50 }

51 }

52 template<class T>

53 Set<T>* Set<T>::setUnion(const

Set<T>& otherSet)

54 {

55 Set<T> *unionSet = new Set<T>();

56 Node<T>* iterator = head;

57 while (iterator != NULL)

58 {

59 unionSet->add(iterator->getData(

));

60 iterator = iterator->getLink();

61 }

62 iterator = otherSet.head;

63 while (iterator != NULL)

64 {

65 unionSet->add(iterator->getData(

));

66 iterator = iterator->getLink();

67 }

68 return unionSet;

69 }

Implementation File for a Set
Template Class (4 of 4)

17-61Copyright © 2016 Pearson Inc. All rights reserved.

70 template<class T>

71 Set<T>* Set<T>::setIntersection(const Set<T>& otherSet)

72 {

73 Set<T> *interSet = new Set<T>();

74 Node<T>* iterator = head;

75 while (iterator != NULL)

76 {

77 if (otherSet.contains(iterator->getData()))

78 {

79 interSet->add(iterator->getData());

80 }

81 iterator = iterator->getLink();

82 }

83 return interSet;

84 }

85 } // SetSavitch

Set Demonstration (1 of 3)

17-62Copyright © 2016 Pearson Inc. All rights reserved.

1 // Program to demonstrate use of the Set class

2 #include <iostream>

3 #include <string>

4 #include "set.h"

5 #include "listtools.cpp"

6 #include "set.cpp"

7 using std::cout;

8 using std::endl;

9 using std::string;

10 using namespace SetSavitch;

11 int main()

12 {

13 Set<string> round; // Round things

14 Set<string> green; // Green things

15 round.add("peas"); // Sample data for both sets

16 round.add("ball");

17 round.add("pie");

18 round.add("grapes");

19 green.add("peas");

20 green.add("grapes");

21 green.add("garden hose");

22 green.add("grass");

Set Demonstration (2 of 3)

17-63Copyright © 2016 Pearson Inc. All rights reserved.

23 cout << "Contents of set round: ";

24 round.output();

25 cout << "Contents of set green: ";

26 green.output();

27 cout << "ball in set round? " <<

28 round.contains("ball") << endl;

29 cout << "ball in set green? " <<

30 green.contains("ball") << endl;

31 cout << "ball and peas in same set? ";

32 if ((round.contains("ball") && round.contains("peas")) ||

33 (green.contains("ball") && green.contains("peas")))

34 cout << " true" << endl;

35 else

36 cout << " false" << endl;

37 cout << "pie and grass in same set? ";

38 if ((round.contains("pie") && round.contains("grass")) ||

39 (green.contains("pie") && green.contains("grass")))

40 cout << " true" << endl;

41 else

42 cout << " false" << endl;

Set Demonstration (3 of 3)

17-64Copyright © 2016 Pearson Inc. All rights reserved.

43 cout << "Union of green and round: " << endl;

44 Set<string> *unionset = round.setUnion(green);

45 unionset->output();

46 delete unionset;

47 cout << "Intersection of green and round: " << endl;

48 Set<string> *interset = round.setIntersection(green);

49 interset->output();

50 delete interset;

51 return 0;

52 }

SAMPLE DIALOGUE

Contents of set round: grapes pie ball peas

Contents of set green: grass garden hose grapes peas

ball in set round? 1

ball in set green? 0

ball and peas in same set? true

pie and grass in same set? false

Union of green and round:

garden hose grass peas ball pie grapes

Intersection of green and round:

peas grapes

Friend Classes

• Recall constant use of getLink and
setlink accessor and mutator functions
– Somewhat of a nuisance

– Similar to making data public?!
• Public makes available to ALL!

• Use friend class
– Make queue template class "friend" of node

template class

– All private link members directly available in
member functions of queue class!

17-65Copyright © 2016 Pearson Inc. All rights reserved.

Forward Declaration

• Class friendships typically require classes
reference each other

– Presents problem

– How can "both" be declared at same time?

• Requires forward declaration

– Simple class heading given inside other:
class Queue; //Forward Dec.

– Announces "class Queue will exist"

17-66Copyright © 2016 Pearson Inc. All rights reserved.

Iterators

• Construct for cycling through data

– Like a "traversal"

– Allows "whatever" actions required on data

• Pointers typically used as iterators

– Seen in linked list implementation

17-67Copyright © 2016 Pearson Inc. All rights reserved.

Pointers as Iterators

• Recall: linked list: "prototypical" data structure

• Pointer: "prototypical" example of iterator

– Pointer used as iterator by moving thru
linked list node by node starting at head:

– Example:
Node_Type *iterator;
for (iterator = Head; iterator != NULL;

iterator=iterator->Link)
Do_Action

17-68Copyright © 2016 Pearson Inc. All rights reserved.

Iterator Classes

• More versatile than pointer

• Typical overloaded operators:
++ advances iterator to next item
-- retreats iterator to previous item
== Compares iterators
!= Compare for not equal
* Accesses one item

• Data structure class would have members:
begin(): returns iterator to 1st item in structure
end(): returns iterator to test if at end

17-69Copyright © 2016 Pearson Inc. All rights reserved.

Iterator Class Example

• Cycle through data structure named ds:

for (i=ds.begin();i!=ds.end();i++)
process *i //*i is current data item

• i is name of iterator

17-70Copyright © 2016 Pearson Inc. All rights reserved.

Trees Introduction

• Trees can be complex data structures

• Only basics here:
– Constructing, manipulating

– Using nodes and pointers

• Recall linked list: nodes have only one
pointer  next node

• Trees have two, & sometimes more,
pointers to other nodes

17-71Copyright © 2016 Pearson Inc. All rights reserved.

Tree Structure:
Display 17.35 A Binary Tree (1 of 2)

17-72Copyright © 2016 Pearson Inc. All rights reserved.

Tree Structure:
Display 17.35 A Binary Tree (2 of 2)

17-73Copyright © 2016 Pearson Inc. All rights reserved.

Tree Properties

• Notice paths
– From top to any node

– No "cycles" – follow pointers, will reach "end"

• Notice here each node has two links
– Called binary tree

– Most common type of tree

• Root node
– Similar to linked list’s head

• Leaf nodes
– Both link variables are NULL (no subtrees)

17-74Copyright © 2016 Pearson Inc. All rights reserved.

Trees and Recursion

• Note tree’s "recursive structure"

• Each tree has two subtrees

– Each subtree has two subtrees

• Etc., etc.

• Makes trees amenable to recursive
algorithms

– For searching especially!

17-75Copyright © 2016 Pearson Inc. All rights reserved.

Tree Processing

• Preorder Processing:
1. Process data in root node

2. Process left subtree

3. Process right subtree

• In-order Processing:
1. Process left subtree

2. Process data in root

3. Process right subtree

• Postorder Processing:
1. Process left subtree

2. Process right subtree

3. Process data in root

17-76Copyright © 2016 Pearson Inc. All rights reserved.

Tree Storage

• Our example stored values in special way:
– Called binary search tree storage rule:

1. values in left subtree less than root value

2. values in right subtree greater than root

3. rule applies recursively to each subtree

• Trees using this storage mechanism:
– Called binary search tree (BST)

– Traversals:
Inorder  values "in order"
Preorder  "prefix" notation
Postorder  "postfix" notation

17-77Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Node is struct or class object

– One or more members is pointer

– Nodes connected by member pointers
• Produce structures that grow and shrink at runtime

• Linked list

– List of nodes where each node points to next

– In a doubly linked lists there are pointers in both directions

• End of linked list marked with NULL pointer

17-78Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Stack is LIFO data structure

• Queue is FIFO data structure

• Hash Tables are data structures for quick storage and
retrieval; can be implemented with a linked list

• Sets can be implemented with linked lists

• Iterator construct allows cycling through
data items in given data structure

• Tree data structures
– Nodes have two member pointers

– Each point to other nodes/subtrees

• Binary search tree
– Special storage rules allow rapid searches

17-79Copyright © 2016 Pearson Inc. All rights reserved.

