/ r/:" & = 1 L
I_DJQ’_;U f: C/ o

SIXTH EDITION Cha pter 13

Recursion

Walter Savitch

Copyright © 2016 Pearson, Inc.
All rights reserved. PEARSON

Learning Objectives

e Recursive void Functions
— Tracing recursive calls
— Infinite recursion, overflows

e Recursive Functions that Return a Value
— Powers function

* Thinking Recursively
— Recursive design techniques
— Binary search

Introduction to Recursion

e A function that "calls itself"
— Said to be recursive
— In function definition, call to same function

* C++ allows recursion
— As do most high-level languages

— Can be useful programming technique
— Has limitations

Recursive void Functions

* Divide and Conquer
— Basic design technique
— Break large task into subtasks
* Subtasks could be smaller versions of
the original task!
— When they are = recursion

Recursive void Function Example

Consider task:

Search list for a value
— Subtask 1: search 15t half of list
— Subtask 2: search 29 half of list

Subtasks are smaller versions of original task!

When this occurs, recursive function can
be used.

— Usually results in "elegant” solution

Recursive void Function:
Vertical Numbers

e Task: display digits of number vertically,
one per line

 Example call:
writeVertical(1234);

Produces output:
1

2
3
4

Vertical Numbers:
Recursive Definition

Break problem into two cases
Simple/base case: if n<10
— Simply write number n to screen

Recursive case: if n>=10, two subtasks:
1- Output all digits except last digit
2- Output last digit

Example: argument 1234

— 15t subtask displays 1, 2, 3 vertically
— 2" subtask displays 4

writeVertical Function Definition

* Gilven previous cases:
void writeVertical(int n)
{
if (n <10) //Base case
cout << n << endl;
else
{ //Recursive step
writeVertical(n/10);
cout << (n%10) << endl;

writeVertical Trace

Example call:
writeVertical(123);
- writeVertical(12); (123/10)
- writeVertical(1); (12/10)
- cout << 1 << endl;
cout << 2 << endl;
cout << 3 << endl;

Arrows indicate task function performs
Notice 1% two calls call again (recursive)
Last call (1) displays and "ends"

Recursion—A Closer Look

 Computer tracks recursive calls
— Stops current function

— Must know results of new recursive call
before proceeding

— Saves all information needed for current call

* To be used later
— Proceeds with evaluation of new recursive call

— When THAT call is complete, returns to
"outer" computation

Recursion Big Picture

e Qutline of successful recursive function:

— One or more cases where function
accomplishes it’s task by:

 Making one or more recursive calls to solve
smaller versions of original task

e Called "recursive case(s)"

— One or more cases where function
accomplishes it’s task without recursive calls

* Called "base case(s)" or stopping case(s)

Infinite Recursion

* Base case MUST eventually be entered
* If it doesn’t = infinite recursion

— Recursive calls never end!

e Recall writeVertical example:

— Base case happened when down to
1-digit number

— That’s when recursion stopped

Infinite Recursion Example

Consider alternate function definition:
void newWriteVertical(int n)

{
newWriteVertical(n/10);

cout << (n%10) << endl;

}
Seems "reasonable"” enough

Missing "base case"!
Recursion never stops

Stacks for Recursion

e A stack

— Specialized memory structure

— Like stack of paper
* Place new on top
« Remove when needed from top

— Called "last-in/first-out" memory structure
 Recursion uses stacks

— Each recursive call placed on stack

— When one completes, last call is removed
from stack

Stack Overflow

Size of stack limited
— Memory is finite

Long chain of recursive calls continually
adds to stack

— All are added before base case causes removals

If stack attempts to grow beyond limit:

— Stack overflow error

Infinite recursion always causes this

Recursion Versus lteration

Recursion not always "necessary”
Not even allowed in some languages

Any task accomplished with recursion can
also be done without it

— Nonrecursive: called iterative, using loops
Recursive:

— Runs slower, uses more storage

— Elegant solution; less coding

Recursive Functions
that Return a Value

 Recursion not limited to void functions
 Can return value of any type
e Same technique, outline:

1. One+ cases where value returned is
computed by recursive calls
Should be "smaller" sub-problems
2. One+ cases where value returned
computed without recursive calls

* Base case

Return a Value
Recursion Example: Powers

* Recall predefined function pow():
result = pow(2.0,3.0);

— Returns 2 raised to power 3 (8.0)
— Takes two double arguments
— Returns double value

e Let’s write recursively

— For simple example

Function Definition for power()

* int power(int x, int n)

{

if (n<0)

{
cout << "lllegal argument”;
exit(1);

}

if (n>0)
return (power(x, n-1)*x);

else

return (1);

Calling Function power()

 Example calls:

e power(2, 0);
-2 returns 1
 power(2, 1);
- returns (power(2, 0) * 2);
- returns 1
— Value 1 multiplied by 2 & returned to original call

Calling Function power()

* Larger example:
power(2,3);
- power(2,2)*2
- power(2,1)*2
—>power(2,0)*2
21

— Reaches base case
— Recursion stops
— Values "returned back" up stack

Tracing Function power():
Display 13.4 Evaluating the Recursive Function Call
power(2,3)

Display 13.4, Evaluating the Recursive Function Call power(2,3)

SEQUENCE OF RECURSIVE CALLS HOW THE FINAL VALUE IS COMPUTED

1
<ower(2, 0) *2 ’

Start Here power(2, 3)is 8

Copyright © 2016 Pearson Inc. All rights reserved. 13-22

Thinking Recursively

* |gnore details
— Forget how stack works
— Forget the suspended computations
— Yes, this is an "abstraction" principle!
— And encapsulation principle!

* Let computer do "bookkeeping"
— Programmer just think "big picture”

Thinking Recursively: power

* Consider power() again

* Recursive definition of power:
power(x, n)

returns:
power(x, n—1) * x

— Just ensure "formula" correct
— And ensure base case will be met

Recursive Desigh Techniques

 Don’t trace entire recursive sequence!

* Just check 3 properties:
1. No infinite recursion
2. Stopping cases return correct values
3. Recursive cases return correct values

Recursive Design Check: power()

 Check power() against 3 properties:

1. No infinite recursion:
« 2nd argument decreases by 1 each call
 Eventually must get to base case of 1

2. Stopping case returns correct value:

 power(x,0) is base case
 Returns 1, which is correct for x°

3. Recursive calls correct:
 For n>1, power(x,n) returns power(x,n-1)*x
* Pluginvalues = correct

Tail recursion

e A function that is tail recursive if it has the
property that no further computation occurs
after the recursive call; the function
immediately returns.

* Tail recursive functions can easily be
converted to a more efficient iterative solution

— May be done automatically by your compiler

Mutual Recursion

e When two or more functions call each other it
is called mutual recursion

 Example

— Determine if a string has an even or odd number
of 1’s by invoking a function that keeps track if the
number of 1’s seen so far is even or odd

— Would result in stack overflow for long strings

Mutual Recursion Example (1 of 2)

I/l Recursive program to determine if a string has an even number of 1's.
#include <iostream>
#include <string>

using namespace std;

/[Function prototypes
bool evenNumberOfOnes(string s);
bool oddNumberOfOnes(string s);

/I If the recursive calls end here with an empty string
/[then we had an even number of 1's.
bool evenNumberOfOnes(string s)
{
if (s.length() == 0)
return true; // Is even
else if (s[0]=="1")
return oddNumberOfOnes(s.substr(1));
else
return evenNumberOfOnes(s.substr(1));

Mutual Recursion Example (2 of 2)

/I if the recursive calls end up here with an empty string
// then we had an odd number of 1's.
bool oddNumberOfOnes(string s)

{
if (s.length() == 0)
return false; /l Not even
else if (s[0]=="1")
return evenNumberOfOnes(s.substr(1));
else
return oddNumberOfOnes(s.substr(1));
}
int main()
{

string s ="10011";

if (evenNumberOfOnes(s))

cout << "Even number of ones." << endl;
else

cout << "Odd number of ones." << endl;
return O;

Binary Search

* Recursive function to search array
— Determines IF item is in list, and if so:
— Where inlist it is

e Assumes array is sorted

e Breaks list in half
— Determines if item in 15t or 24 half

— Then searches again just that half
* Recursively (of course)!

 BESNUCHEEERERAER

Display 13.6
Pseudocode for Binary Search

Pseudocode for Binary Search

int a[Some_Size_Value]:

ALGORITHM TO SEARCH a[first] THroucH a[last]

J/Precondition:
J/a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]

TO LOCATE THE VALUE KEY:

if (first > last) //A stopping case
found = false:
else
{
mid = approximate midpoint between first and last;
if (key == a[mid]) //A stopping case
{
found = false;
location = mid;
}
else if key < a[mid] //A case with recursion
search a[first] through a[mid - 1];
else if key > a[mid] //A case with recursion
search a[mid + 1] through a[last];

}

Copyright © 2016 Pearson Inc. All rights reserved.

13-32

Checking the Recursion

Check binary search against criteria:
1.

No infinite recursion:
e Each call increases first or decreases last
* Eventually first will be greater than last

Stopping cases perform correct action:

* |f first > last 2 no elements between them, so key
can’t be there!

e |F key == a[mid] = correctly found!

Recursive calls perform correct action
* |f key <a[mid] = key in 1%t half — correct call
* If key > a[mid] = key in 2"? half — correct call

Execution of
Binary Search:
Display 13.8
Execution of the
Function search

Copyright © 2016 Pearson Inc. All rights reserved.

Execution of the Function search

54

v
W

56

57

58

60

61

62

63

afo]
af1]
al2]
a[3]
al4]
a[s])
a(6]
al7]
a[8]

al9]

a[o]
a[1]
af2]
a[3]
af4]
a[s]
a[6]
al[7]
a[8]

af9]

bt first == 5

e last == 6

lot here

key is 63
-—first ==10 54
55
56
57
—— mid = (0 + 9)/2 58
59
next 60
- 61
62
—-—last == 9 63
o

ale]
af1]
al2]
a[3]
al4]
a[s]
a[6]
al7]
a[8]

a[9]

Not in
this half

- first==S5

e—— mid = (5 + 9)/2

90

t— last == 9

mid = (5 + 6)/2 whichis 5
a[mid]) /s a[S) == 63

found = TRUE;
location = mid;

13-34

Efficiency of Binary Search

* Extremely fast

— Compared with sequential search
* Half of array eliminated at start!

— Then a quarter, then 1/8, etc.

— Essentially eliminate half with each call
 Example:

Array of 100 elements:

— Binary search never needs more than 7 compares!
* Logarithmic efficiency (log n)

Recursive Solutions

* Notice binary search algorithm actually
solves "more general"” problem

— Original goal: design function to search an
entire array

— Our function: allows search of any interval of array
* By specifying bounds first and last

* Very common when designing
recursive functions

Summary 1

Reduce problem into smaller instances of
same problem -> recursive solution

Recursive algorithm has two cases:

— Base/stopping case
— Recursive case

Ensure no infinite recursion

Use criteria to determine recursion correct
— Three essential properties

Typically solves "more general" problem

