
Chapter 13

Recursion

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Recursive void Functions
– Tracing recursive calls

– Infinite recursion, overflows

• Recursive Functions that Return a Value
– Powers function

• Thinking Recursively
– Recursive design techniques

– Binary search

13-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to Recursion

• A function that "calls itself"

– Said to be recursive

– In function definition, call to same function

• C++ allows recursion

– As do most high-level languages

– Can be useful programming technique

– Has limitations

13-3Copyright © 2016 Pearson Inc. All rights reserved.

Recursive void Functions

• Divide and Conquer

– Basic design technique

– Break large task into subtasks

• Subtasks could be smaller versions of
the original task!

– When they are recursion

13-4Copyright © 2016 Pearson Inc. All rights reserved.

Recursive void Function Example

• Consider task:

• Search list for a value

– Subtask 1: search 1st half of list

– Subtask 2: search 2nd half of list

• Subtasks are smaller versions of original task!

• When this occurs, recursive function can
be used.

– Usually results in "elegant" solution

13-5Copyright © 2016 Pearson Inc. All rights reserved.

Recursive void Function:
Vertical Numbers

• Task: display digits of number vertically,
one per line

• Example call:
writeVertical(1234);
Produces output:
1
2
3
4

13-6Copyright © 2016 Pearson Inc. All rights reserved.

Vertical Numbers:
Recursive Definition

• Break problem into two cases

• Simple/base case: if n<10
– Simply write number n to screen

• Recursive case: if n>=10, two subtasks:
1- Output all digits except last digit

2- Output last digit

• Example: argument 1234:
– 1st subtask displays 1, 2, 3 vertically

– 2nd subtask displays 4

13-7Copyright © 2016 Pearson Inc. All rights reserved.

writeVertical Function Definition

• Given previous cases:
void writeVertical(int n)
{

if (n < 10) //Base case
cout << n << endl;

else
{ //Recursive step

writeVertical(n/10);
cout << (n%10) << endl;

}
}

13-8Copyright © 2016 Pearson Inc. All rights reserved.

writeVertical Trace

• Example call:
writeVertical(123);
 writeVertical(12); (123/10)

 writeVertical(1); (12/10)
 cout << 1 << endl;

cout << 2 << endl;
cout << 3 << endl;

• Arrows indicate task function performs

• Notice 1st two calls call again (recursive)

• Last call (1) displays and "ends"

13-9Copyright © 2016 Pearson Inc. All rights reserved.

Recursion—A Closer Look

• Computer tracks recursive calls

– Stops current function

– Must know results of new recursive call
before proceeding

– Saves all information needed for current call
• To be used later

– Proceeds with evaluation of new recursive call

– When THAT call is complete, returns to
"outer" computation

13-10Copyright © 2016 Pearson Inc. All rights reserved.

Recursion Big Picture

• Outline of successful recursive function:

– One or more cases where function
accomplishes it’s task by:

• Making one or more recursive calls to solve
smaller versions of original task

• Called "recursive case(s)"

– One or more cases where function
accomplishes it’s task without recursive calls

• Called "base case(s)" or stopping case(s)

13-11Copyright © 2016 Pearson Inc. All rights reserved.

Infinite Recursion

• Base case MUST eventually be entered

• If it doesn’t infinite recursion

– Recursive calls never end!

• Recall writeVertical example:

– Base case happened when down to
1-digit number

– That’s when recursion stopped

13-12Copyright © 2016 Pearson Inc. All rights reserved.

Infinite Recursion Example

• Consider alternate function definition:
void newWriteVertical(int n)
{

newWriteVertical(n/10);
cout << (n%10) << endl;

}

• Seems "reasonable" enough

• Missing "base case"!

• Recursion never stops

13-13Copyright © 2016 Pearson Inc. All rights reserved.

Stacks for Recursion

• A stack
– Specialized memory structure

– Like stack of paper
• Place new on top

• Remove when needed from top

– Called "last-in/first-out" memory structure

• Recursion uses stacks
– Each recursive call placed on stack

– When one completes, last call is removed
from stack

13-14Copyright © 2016 Pearson Inc. All rights reserved.

Stack Overflow

• Size of stack limited

– Memory is finite

• Long chain of recursive calls continually
adds to stack

– All are added before base case causes removals

• If stack attempts to grow beyond limit:

– Stack overflow error

• Infinite recursion always causes this

13-15Copyright © 2016 Pearson Inc. All rights reserved.

Recursion Versus Iteration

• Recursion not always "necessary"

• Not even allowed in some languages

• Any task accomplished with recursion can
also be done without it

– Nonrecursive: called iterative, using loops

• Recursive:

– Runs slower, uses more storage

– Elegant solution; less coding

13-16Copyright © 2016 Pearson Inc. All rights reserved.

Recursive Functions
that Return a Value

• Recursion not limited to void functions

• Can return value of any type

• Same technique, outline:

1. One+ cases where value returned is
computed by recursive calls
• Should be "smaller" sub-problems

2. One+ cases where value returned
computed without recursive calls
• Base case

13-17Copyright © 2016 Pearson Inc. All rights reserved.

Return a Value
Recursion Example: Powers

• Recall predefined function pow():
result = pow(2.0,3.0);

– Returns 2 raised to power 3 (8.0)

– Takes two double arguments

– Returns double value

• Let’s write recursively

– For simple example

13-18Copyright © 2016 Pearson Inc. All rights reserved.

Function Definition for power()

• int power(int x, int n)
{

if (n<0)
{

cout << "Illegal argument";
exit(1);

}
if (n>0)

return (power(x, n-1)*x);
else

return (1);
}

13-19Copyright © 2016 Pearson Inc. All rights reserved.

Calling Function power()

• Example calls:

• power(2, 0);
 returns 1

• power(2, 1);
 returns (power(2, 0) * 2);

 returns 1
– Value 1 multiplied by 2 & returned to original call

13-20Copyright © 2016 Pearson Inc. All rights reserved.

Calling Function power()

• Larger example:
power(2,3);
 power(2,2)*2

 power(2,1)*2
power(2,0)*2
1

– Reaches base case

– Recursion stops

– Values "returned back" up stack

13-21Copyright © 2016 Pearson Inc. All rights reserved.

Tracing Function power():
Display 13.4 Evaluating the Recursive Function Call

power(2,3)

13-22Copyright © 2016 Pearson Inc. All rights reserved.

Thinking Recursively

• Ignore details

– Forget how stack works

– Forget the suspended computations

– Yes, this is an "abstraction" principle!

– And encapsulation principle!

• Let computer do "bookkeeping"

– Programmer just think "big picture"

13-23Copyright © 2016 Pearson Inc. All rights reserved.

Thinking Recursively: power

• Consider power() again

• Recursive definition of power:
power(x, n)

returns:

power(x, n – 1) * x
– Just ensure "formula" correct

– And ensure base case will be met

13-24Copyright © 2016 Pearson Inc. All rights reserved.

Recursive Design Techniques

• Don’t trace entire recursive sequence!

• Just check 3 properties:

1. No infinite recursion

2. Stopping cases return correct values

3. Recursive cases return correct values

13-25Copyright © 2016 Pearson Inc. All rights reserved.

Recursive Design Check: power()

• Check power() against 3 properties:

1. No infinite recursion:
• 2nd argument decreases by 1 each call

• Eventually must get to base case of 1

2. Stopping case returns correct value:
• power(x,0) is base case

• Returns 1, which is correct for x0

3. Recursive calls correct:
• For n>1, power(x,n) returns power(x,n-1)*x

• Plug in values correct

13-26Copyright © 2016 Pearson Inc. All rights reserved.

Tail recursion

• A function that is tail recursive if it has the
property that no further computation occurs
after the recursive call; the function
immediately returns.

• Tail recursive functions can easily be
converted to a more efficient iterative solution

– May be done automatically by your compiler

13-27Copyright © 2016 Pearson Inc. All rights reserved.

Mutual Recursion

• When two or more functions call each other it
is called mutual recursion

• Example

– Determine if a string has an even or odd number
of 1’s by invoking a function that keeps track if the
number of 1’s seen so far is even or odd

– Would result in stack overflow for long strings

13-28Copyright © 2016 Pearson Inc. All rights reserved.

Mutual Recursion Example (1 of 2)

13-29Copyright © 2016 Pearson Inc. All rights reserved.

// Recursive program to determine if a string has an even number of 1's.

#include <iostream>

#include <string>

using namespace std;

// Function prototypes

bool evenNumberOfOnes(string s);

bool oddNumberOfOnes(string s);

// If the recursive calls end here with an empty string

// then we had an even number of 1's.

bool evenNumberOfOnes(string s)

{

if (s.length() == 0)

return true; // Is even

else if (s[0]=='1')

return oddNumberOfOnes(s.substr(1));

else

return evenNumberOfOnes(s.substr(1));

}

Mutual Recursion Example (2 of 2)

13-30Copyright © 2016 Pearson Inc. All rights reserved.

// if the recursive calls end up here with an empty string

// then we had an odd number of 1's.

bool oddNumberOfOnes(string s)

{

if (s.length() == 0)

return false; // Not even

else if (s[0]=='1')

return evenNumberOfOnes(s.substr(1));

else

return oddNumberOfOnes(s.substr(1));

}

int main()

{

string s = "10011";

if (evenNumberOfOnes(s))

cout << "Even number of ones." << endl;

else

cout << "Odd number of ones." << endl;

return 0;

}

Binary Search

• Recursive function to search array
– Determines IF item is in list, and if so:

– Where in list it is

• Assumes array is sorted

• Breaks list in half
– Determines if item in 1st or 2nd half

– Then searches again just that half
• Recursively (of course)!

13-31Copyright © 2016 Pearson Inc. All rights reserved.

Display 13.6
Pseudocode for Binary Search

13-32Copyright © 2016 Pearson Inc. All rights reserved.

Checking the Recursion

• Check binary search against criteria:

1. No infinite recursion:
• Each call increases first or decreases last

• Eventually first will be greater than last

2. Stopping cases perform correct action:
• If first > last no elements between them, so key

can’t be there!

• IF key == a[mid] correctly found!

3. Recursive calls perform correct action
• If key < a[mid] key in 1st half – correct call

• If key > a[mid] key in 2nd half – correct call

13-33Copyright © 2016 Pearson Inc. All rights reserved.

Execution of
Binary Search:
Display 13.8

Execution of the
Function search

13-34Copyright © 2016 Pearson Inc. All rights reserved.

Efficiency of Binary Search

• Extremely fast
– Compared with sequential search

• Half of array eliminated at start!
– Then a quarter, then 1/8, etc.

– Essentially eliminate half with each call

• Example:
Array of 100 elements:
– Binary search never needs more than 7 compares!

• Logarithmic efficiency (log n)

13-35Copyright © 2016 Pearson Inc. All rights reserved.

Recursive Solutions

• Notice binary search algorithm actually
solves "more general" problem
– Original goal: design function to search an

entire array

– Our function: allows search of any interval of array
• By specifying bounds first and last

• Very common when designing
recursive functions

13-36Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Reduce problem into smaller instances of
same problem -> recursive solution

• Recursive algorithm has two cases:
– Base/stopping case

– Recursive case

• Ensure no infinite recursion

• Use criteria to determine recursion correct
– Three essential properties

• Typically solves "more general" problem

13-37Copyright © 2016 Pearson Inc. All rights reserved.

