ABSOLUTE C++
 SIXTH EDITION

Chapter 13

Recursion

Walter Savitch

Learning Objectives

- Recursive void Functions
- Tracing recursive calls
- Infinite recursion, overflows
- Recursive Functions that Return a Value
- Powers function
- Thinking Recursively
- Recursive design techniques
- Binary search

Introduction to Recursion

- A function that "calls itself"
- Said to be recursive
- In function definition, call to same function
- C++ allows recursion
- As do most high-level languages
- Can be useful programming technique
- Has limitations

Recursive void Functions

- Divide and Conquer
- Basic design technique
- Break large task into subtasks
- Subtasks could be smaller versions of the original task!
- When they are \rightarrow recursion

Recursive void Function Example

- Consider task:
- Search list for a value
- Subtask 1: search $1^{\text {st }}$ half of list
- Subtask 2: search $2^{\text {nd }}$ half of list
- Subtasks are smaller versions of original task!
- When this occurs, recursive function can be used.
- Usually results in "elegant" solution

Recursive void Function: Vertical Numbers

- Task: display digits of number vertically, one per line
- Example call: writeVertical(1234); Produces output:

2
3
4

Vertical Numbers: Recursive Definition

- Break problem into two cases
- Simple/base case: if $\mathrm{n}<10$
- Simply write number n to screen
- Recursive case: if $n>=10$, two subtasks:

1- Output all digits except last digit
2- Output last digit

- Example: argument 1234:
$-1^{\text {st }}$ subtask displays $1,2,3$ vertically
$-2^{\text {nd }}$ subtask displays 4

writeVertical Function Definition

- Given previous cases: void writeVertical(int n) \{
if $(\mathrm{n}<10) \underset{\text { cout } \ll \mathrm{n} \ll \text { endl; }}{ } \quad / /$ Base case
else
\{ writeVertical(n/10); cout << (n\%10) << endl;
\}
\}

writeVertical Trace

- Example call: writeVertical(123);
\rightarrow writeVertical(12); (123/10)
\rightarrow writeVertical(1); (12/10) \rightarrow cout << 1 << endl; cout $\ll 2$ << endl; cout << 3 << endl;
- Arrows indicate task function performs
- Notice $1^{\text {st }}$ two calls call again (recursive)
- Last call (1) displays and "ends"

Recursion-A Closer Look

- Computer tracks recursive calls
- Stops current function
- Must know results of new recursive call before proceeding
- Saves all information needed for current call
- To be used later
- Proceeds with evaluation of new recursive call
- When THAT call is complete, returns to "outer" computation

Recursion Big Picture

- Outline of successful recursive function:
- One or more cases where function accomplishes it's task by:
- Making one or more recursive calls to solve smaller versions of original task
- Called "recursive case(s)"
- One or more cases where function accomplishes it's task without recursive calls
- Called "base case(s)" or stopping case(s)

Infinite Recursion

- Base case MUST eventually be entered
- If it doesn't \rightarrow infinite recursion
- Recursive calls never end!
- Recall writeVertical example:
- Base case happened when down to 1-digit number
- That's when recursion stopped

Infinite Recursion Example

- Consider alternate function definition: void newWriteVertical(int n) $\{$
newWriteVertical($\mathrm{n} / 10$); cout << ($\mathrm{n} \% 10$) << endl; \}
- Seems "reasonable" enough
- Missing "base case"!
- Recursion never stops

Stacks for Recursion

- A stack
- Specialized memory structure
- Like stack of paper
- Place new on top
- Remove when needed from top
- Called "last-in/first-out" memory structure
- Recursion uses stacks
- Each recursive call placed on stack
- When one completes, last call is removed from stack

Stack Overflow

- Size of stack limited
- Memory is finite
- Long chain of recursive calls continually adds to stack
- All are added before base case causes removals
- If stack attempts to grow beyond limit:
- Stack overflow error
- Infinite recursion always causes this

Recursion Versus Iteration

- Recursion not always "necessary"
- Not even allowed in some languages
- Any task accomplished with recursion can also be done without it
- Nonrecursive: called iterative, using loops
- Recursive:
- Runs slower, uses more storage
- Elegant solution; less coding

Recursive Functions that Return a Value

- Recursion not limited to void functions
- Can return value of any type
- Same technique, outline:

1. One+ cases where value returned is computed by recursive calls

- Should be "smaller" sub-problems

2. One+ cases where value returned computed without recursive calls

- Base case

Return a Value

Recursion Example: Powers

- Recall predefined function pow(): result = pow(2.0,3.0);
- Returns 2 raised to power 3 (8.0)
- Takes two double arguments
- Returns double value
- Let's write recursively
- For simple example

Function Definition for power()

- int power(int x, int n)
\{

$$
\begin{aligned}
& \text { if }(n<0) \\
& \{
\end{aligned}
$$

cout << "Illegal argument"; exit(1);
\}
if $(\mathrm{n}>0)$
return (power(x, n-1)*x);
else
return (1);
\}

Calling Function power()

- Example calls:
- power(2,0);
\rightarrow returns 1
- power(2, 1);
\rightarrow returns (power(2, 0) * 2);
\rightarrow returns 1
- Value 1 multiplied by 2 \& returned to original call

Calling Function power()

- Larger example: power(2,3);
$\rightarrow \operatorname{power}(2,2) * 2$
$\rightarrow \operatorname{power}(2,1)^{*} 2$
\rightarrow power(2,0)*2
$\rightarrow 1$
- Reaches base case
- Recursion stops
- Values "returned back" up stack

Tracing Function power():
 Display 13.4 Evaluating the Recursive Function Call power(2,3)

Thinking Recursively

- Ignore details
- Forget how stack works
- Forget the suspended computations
- Yes, this is an "abstraction" principle!
- And encapsulation principle!
- Let computer do "bookkeeping"
- Programmer just think "big picture"

Thinking Recursively: power

- Consider power() again
- Recursive definition of power: power(x, n)
returns:
$\operatorname{power}(\mathrm{x}, \mathrm{n}-1)^{*} \mathrm{x}$
- Just ensure "formula" correct
- And ensure base case will be met

Recursive Design Techniques

- Don't trace entire recursive sequence!

Just check 3 properties:

1. No infinite recursion
2. Stopping cases return correct values
3. Recursive cases return correct values

Recursive Design Check: power()

- Check power() against 3 properties:

1. No infinite recursion:

- $2^{\text {nd }}$ argument decreases by 1 each call
- Eventually must get to base case of 1

2. Stopping case returns correct value:

- power $(\mathrm{x}, 0)$ is base case
- Returns 1 , which is correct for x^{0}

3. Recursive calls correct:

- For $n>1$, power (x, n) returns power($(x, n-1)^{*} x$
- Plug in values \rightarrow correct

Tail recursion

- A function that is tail recursive if it has the property that no further computation occurs after the recursive call; the function immediately returns.
- Tail recursive functions can easily be converted to a more efficient iterative solution
- May be done automatically by your compiler

Mutual Recursion

- When two or more functions call each other it is called mutual recursion
- Example
- Determine if a string has an even or odd number of 1's by invoking a function that keeps track if the number of 1's seen so far is even or odd
- Would result in stack overflow for long strings

Mutual Recursion Example (1 of 2)

```
// Recursive program to determine if a string has an even number of 1's.
#include <iostream>
#include <string>
using namespace std;
// Function prototypes
bool evenNumberOfOnes(string s);
bool oddNumberOfOnes(string s);
// If the recursive calls end here with an empty string
// then we had an even number of 1's.
bool evenNumberOfOnes(string s)
{
    if (s.length() == 0)
    return true; // Is even
else if (s[0]=='1')
    return oddNumberOfOnes(s.substr(1));
    else
    return evenNumberOfOnes(s.substr(1));
}
```


Mutual Recursion Example (2 of 2)

```
// if the recursive calls end up here with an empty string
// then we had an odd number of 1's.
bool oddNumberOfOnes(string s)
{
    if (s.length() == 0)
        return false; // Not even
    else if (s[0]=='1')
    return evenNumberOfOnes(s.substr(1));
    else
    return oddNumberOfOnes(s.substr(1));
}
int main()
{
    string s = "10011";
    if (evenNumberOfOnes(s))
        cout << "Even number of ones." << endl;
    else
        cout << "Odd number of ones." << endl;
    return 0;
}
```


Binary Search

- Recursive function to search array
- Determines IF item is in list, and if so:
- Where in list it is
- Assumes array is sorted
- Breaks list in half
- Determines if item in $1^{\text {st }}$ or $2^{\text {nd }}$ half
- Then searches again just that half
- Recursively (of course)!

Display 13.6 Pseudocode for Binary Search

Pseudocode for Binary Search

```
int a[Some_Size_Value];
Algorithm to Search a[first] through a[last]
//Precondition:
//a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
```

TO locate the value key:

```
if (first > last) //A stopping case
    found = false;
else
{
    mid = approximate midpoint between first and last;
        if (key == a[mid]) //A stopping case
    {
            found = false;
            location = mid;
    }
    else if key < a[mid] //A case with recursion
            search a[first] through a[mid - 1];
    else if key > a[mid] //A case with recursion
            search a[mid + 1] through a[last];
}
```


Checking the Recursion

- Check binary search against criteria:

1. No infinite recursion:

- Each call increases first or decreases last
- Eventually first will be greater than last

2. Stopping cases perform correct action:

- If first > last \rightarrow no elements between them, so key can't be there!
- IF key $==\mathrm{a}[\mathrm{mid}] \rightarrow$ correctly found!

3. Recursive calls perform correct action

- If key < a[mid] \rightarrow key in $1^{\text {st }}$ half - correct call
- If key $>\mathrm{a}$ [mid] \rightarrow key in $2^{\text {nd }}$ half - correct call

Execution of Binary Search: Display 13.8
 Execution of the
 Function search

Efficiency of Binary Search

- Extremely fast
- Compared with sequential search
- Half of array eliminated at start!
- Then a quarter, then $1 / 8$, etc.
- Essentially eliminate half with each call
- Example:

Array of 100 elements:

- Binary search never needs more than 7 compares!
- Logarithmic efficiency ($\log \mathrm{n}$)

Recursive Solutions

- Notice binary search algorithm actually solves "more general" problem
- Original goal: design function to search an entire array
- Our function: allows search of any interval of array
- By specifying bounds first and last
- Very common when designing recursive functions

Summary 1

- Reduce problem into smaller instances of same problem -> recursive solution
- Recursive algorithm has two cases:
- Base/stopping case
- Recursive case
- Ensure no infinite recursion
- Use criteria to determine recursion correct
- Three essential properties
- Typically solves "more general" problem

