
Chapter 14

Inheritance

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Inheritance Basics

– Derived classes, with constructors

– protected: qualifier

– Redefining member functions

– Non-inherited functions

• Programming with Inheritance

– Assignment operators and copy constructors

– Destructors in derived classes

– Multiple inheritance

14-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to Inheritance

• Object-oriented programming

– Powerful programming technique

– Provides abstraction dimension called inheritance

• General form of class is defined

– Specialized versions then inherit properties of
general class

– And add to it/modify it’s functionality for it’s
appropriate use

14-3Copyright © 2016 Pearson Inc. All rights reserved.

Inheritance Basics

• New class inherited from another class

• Base class
– "General" class from which others derive

• Derived class
– New class

– Automatically has base class’s:
• Member variables

• Member functions

– Can then add additional member functions
and variables

14-4Copyright © 2016 Pearson Inc. All rights reserved.

Derived Classes

• Consider example:
Class of "Employees"

• Composed of:

– Salaried employees

– Hourly employees

• Each is "subset" of employees

– Another might be those paid fixed wage each
month or week

14-5Copyright © 2016 Pearson Inc. All rights reserved.

Derived Classes

• Don’t "need" type of generic "employee"

– Since no one’s just an "employee"

• General concept of employee helpful!

– All have names

– All have social security numbers

– Associated functions for these "basics" are
same among all employees

• So "general" class can contain all these
"things" about employees

14-6Copyright © 2016 Pearson Inc. All rights reserved.

Employee Class

• Many members of "employee" class apply
to all types of employees
– Accessor functions

– Mutator functions

– Most data items:
• SSN

• Name

• Pay

• We won’t have "objects" of this
class, however

14-7Copyright © 2016 Pearson Inc. All rights reserved.

Employee Class

• Consider printCheck() function:

– Will always be "redefined" in derived classes

– So different employee types can have
different checks

– Makes no sense really for "undifferentiated"
employee

– So function printCheck() in Employee class
says just that
• Error message stating "printCheck called for

undifferentiated employee!! Aborting…"

14-8Copyright © 2016 Pearson Inc. All rights reserved.

Deriving from Employee Class

• Derived classes from Employee class:

– Automatically have all member variables

– Automatically have all member functions

• Derived class said to "inherit" members
from base class

• Can then redefine existing members
and/or add new members

14-9Copyright © 2016 Pearson Inc. All rights reserved.

Display 14.3 Interface for the Derived Class
HourlyEmployee (1 of 2)

14-10Copyright © 2016 Pearson Inc. All rights reserved.

Display 14.3 Interface for the Derived Class
HourlyEmployee (2 of 2)

14-11Copyright © 2016 Pearson Inc. All rights reserved.

HourlyEmployee Class Interface

• Note definition begins same as any other

– #ifndef structure

– Includes required libraries

– Also includes employee.h!

• And, the heading:
class HourlyEmployee : public Employee
{ …

– Specifies "publicly inherited" from Employee
class

14-12Copyright © 2016 Pearson Inc. All rights reserved.

HourlyEmployee Class Additions

• Derived class interface only lists new or
"to be redefined" members

– Since all others inherited are already defined

– i.e.: "all" employees have ssn, name, etc.

• HourlyEmployee adds:

– Constructors

– wageRate, hours member variables

– setRate(), getRate(), setHours(), getHours()
member functions

14-13Copyright © 2016 Pearson Inc. All rights reserved.

HourlyEmployee Class Redefinitions

• HourlyEmployee redefines:

– printCheck() member function

– This "overrides" the printCheck() function
implementation from Employee class

• It’s definition must be in HourlyEmployee
class’s implementation

– As do other member functions declared in
HourlyEmployee’s interface
• New and "to be redefined"

14-14Copyright © 2016 Pearson Inc. All rights reserved.

Inheritance Terminology

• Common to simulate family relationships

• Parent class
– Refers to base class

• Child class
– Refers to derived class

• Ancestor class
– Class that’s a parent of a parent …

• Descendant class
– Opposite of ancestor

14-15Copyright © 2016 Pearson Inc. All rights reserved.

Constructors in Derived Classes

• Base class constructors are NOT inherited in derived
classes!
– But they can be invoked within derived class

constructor
• Which is all we need!

• Base class constructor must initialize all
base class member variables
– Those inherited by derived class

– So derived class constructor simply calls it
• "First" thing derived class constructor does

14-16Copyright © 2016 Pearson Inc. All rights reserved.

Derived Class Constructor Example

• Consider syntax for HourlyEmployee
constructor:
HourlyEmployee::HourlyEmployee(string theName,

string theNumber, double theWageRate,
double theHours)

: Employee(theName, theNumber),
wageRate(theWageRate), hours(theHours)

{
//Deliberately empty

}

• Portion after : is "initialization section"
– Includes invocation of Employee constructor

14-17Copyright © 2016 Pearson Inc. All rights reserved.

Another HourlyEmployee Constructor

• A second constructor:
HourlyEmployee::HourlyEmployee()

: Employee(), wageRate(0),
hours(0)

{
//Deliberately empty

}

• Default version of base class constructor
is called (no arguments)

• Should always invoke one of the base
class’s constructors

14-18Copyright © 2016 Pearson Inc. All rights reserved.

Constructor: No Base Class Call

• Derived class constructor should always
invoke one of the base class’s constructors

• If you do not:

– Default base class constructor automatically called

• Equivalent constructor definition:
HourlyEmployee::HourlyEmployee()

: wageRate(0), hours(0)
{ }

14-19Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Base Class Private Data

• Derived class "inherits" private member
variables

– But still cannot directly access them

– Not even through derived class member
functions!

• Private member variables can ONLY be
accessed "by name" in member functions of
the class they’re defined in

14-20Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Base Class Private Member
Functions

• Same holds for base class
member functions

– Cannot be accessed outside interface and
implementation of base class

– Not even in derived class member
function definitions

14-21Copyright © 2016 Pearson Inc. All rights reserved.

Pitfall: Base Class Private Member
Functions Impact

• Larger impact here vs. member variables

– Member variables can be accessed indirectly
via accessor or mutator member functions

– Member functions simply not available

• This is "reasonable"

– Private member functions should be simply
"helper" functions

– Should be used only in class they’re defined

14-22Copyright © 2016 Pearson Inc. All rights reserved.

The protected: Qualifier

• New classification of class members

• Allows access "by name" in derived class
– But nowhere else

– Still no access "by name" in other classes

• In class it’s defined acts like private

• Considered "protected" in derived class
– To allow future derivations

• Many feel this "violates" information hiding

14-23Copyright © 2016 Pearson Inc. All rights reserved.

Redefinition of Member Functions

• Recall interface of derived class:

– Contains declarations for new member functions

– Also contains declarations for inherited
member functions to be changed

– Inherited member functions NOT declared:
• Automatically inherited unchanged

• Implementation of derived class will:

– Define new member functions

– Redefine inherited functions as declared

14-24Copyright © 2016 Pearson Inc. All rights reserved.

Redefining vs. Overloading

• Very different!

• Redefining in derived class:
– SAME parameter list

– Essentially "re-writes" same function

• Overloading:
– Different parameter list

– Defined "new" function that takes
different parameters

– Overloaded functions must have
different signatures

14-25Copyright © 2016 Pearson Inc. All rights reserved.

A Function’s Signature

• Recall definition of a "signature":

– Function’s name

– Sequence of types in parameter list

• Including order, number, types

• Signature does NOT include:

– Return type

– const keyword

– &

14-26Copyright © 2016 Pearson Inc. All rights reserved.

Accessing Redefined Base Function

• When redefined in derived class, base
class’s definition not "lost"

• Can specify it’s use:
Employee JaneE;
HourlyEmployee SallyH;
JaneE.printCheck(); calls Employee’s

printCheck function
SallyH.printCheck(); calls HourlyEmployee

printCheck function
SallyH.Employee::printCheck(); Calls Employee’s

printCheck function!

• Not typical here, but useful sometimes

14-27Copyright © 2016 Pearson Inc. All rights reserved.

Functions Not Inherited

• All "normal" functions in base class are
inherited in derived class

• Exceptions:
– Constructors (we’ve seen)

– Destructors

– Copy constructor
• But if not defined, generates "default" one

• Recall need to define one for pointers!

– Assignment operator
• If not defined default

14-28Copyright © 2016 Pearson Inc. All rights reserved.

Assignment Operators
and Copy Constructors

• Recall: overloaded assignment operators and
copy constructors
NOT inherited

– But can be used in derived class definitions

– Typically MUST be used!

– Similar to how derived class constructor
invokes base class constructor

14-29Copyright © 2016 Pearson Inc. All rights reserved.

Assignment Operator Example

• Given "Derived" is derived from "Base":
Derived& Derived::operator =(const Derived & rightSide)
{

Base::operator =(rightSide);
…

}

• Notice code line

– Calls assignment operator from base class
• This takes care of all inherited member variables

– Would then set new variables from derived
class…

14-30Copyright © 2016 Pearson Inc. All rights reserved.

Copy Constructor Example

• Consider:
Derived::Derived(const Derived& Object)

: Base(Object), …
{…}

• After : is invocation of base copy constructor

– Sets inherited member variables of derived
class object being created

– Note Object is of type Derived; but it’s also of
type Base, so argument is valid

14-31Copyright © 2016 Pearson Inc. All rights reserved.

Destructors in Derived Classes

• If base class destructor functions correctly
– Easy to write derived class destructor

• When derived class destructor is invoked:
– Automatically calls base class destructor!

– So no need for explicit call

• So derived class destructors need only be
concerned with derived class variables
– And any data they "point" to

– Base class destructor handles inherited data
automatically

14-32Copyright © 2016 Pearson Inc. All rights reserved.

Destructor Calling Order

• Consider:
class B derives from class A
class C derives from class B

A B C

• When object of class C goes out of scope:
– Class C destructor called 1st

– Then class B destructor called

– Finally class A destructor is called

• Opposite of how constructors are called

14-33Copyright © 2016 Pearson Inc. All rights reserved.

"Is a" vs. "Has a" Relationships

• Inheritance

– Considered an "Is a" class relationship

– e.g., An HourlyEmployee "is a" Employee

– A Convertible "is a" Automobile

• A class contains objects of another class
as it’s member data

– Considered a "Has a" class relationship

– e.g., One class "has a" object of another
class as it’s data

14-34Copyright © 2016 Pearson Inc. All rights reserved.

Protected and Private Inheritance

• New inheritance "forms"
– Both are rarely used

• Protected inheritance:
class SalariedEmployee : protected Employee
{…}

– Public members in base class become
protected in derived class

• Private inheritance:
class SalariedEmployee : private Employee
{…}

– All members in base class become private
in derived class

14-35Copyright © 2016 Pearson Inc. All rights reserved.

Multiple Inheritance

• Derived class can have more than one
base class!
– Syntax just includes all base classes

separated by commas:
class derivedMulti : public base1, base2
{…}

• Possibilities for ambiguity are endless!

• Dangerous undertaking!
– Some believe should never be used

– Certainly should only be used be experienced
programmers!

14-36Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Inheritance provides code reuse
– Allows one class to "derive" from another,

adding features

• Derived class objects inherit members of
base class
– And may add members

• Private member variables in base class
cannot be accessed "by name" in derived

• Private member functions are not inherited

14-37Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Can redefine inherited member functions
– To perform differently in derived class

• Protected members in base class:
– Can be accessed "by name" in derived class

member functions

• Overloaded assignment operator not inherited
– But can be invoked from derived class

• Constructors are not inherited
– Are invoked from derived class’s constructor

14-38Copyright © 2016 Pearson Inc. All rights reserved.

