
Chapter 15

Polymorphism and
Virtual Functions

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Virtual Function Basics

– Late binding

– Implementing virtual functions

– When to use a virtual function

– Abstract classes and pure virtual functions

• Pointers and Virtual Functions

– Extended type compatibility

– Downcasting and upcasting

– C++ "under the hood" with virtual functions

15-2Copyright © 2016 Pearson Inc. All rights reserved.

Virtual Function Basics

• Polymorphism
– Associating many meanings to one function

– Virtual functions provide this capability

– Fundamental principle of object-oriented
programming!

• Virtual
– Existing in "essence" though not in fact

• Virtual Function
– Can be "used" before it’s "defined"

15-3Copyright © 2016 Pearson Inc. All rights reserved.

Figures Example

• Best explained by example:

• Classes for several kinds of figures
– Rectangles, circles, ovals, etc.

– Each figure an object of different class
• Rectangle data: height, width, center point

• Circle data: center point, radius

• All derive from one parent-class: Figure

• Require function: draw()
– Different instructions for each figure

15-4Copyright © 2016 Pearson Inc. All rights reserved.

Figures Example 2

• Each class needs different draw function

• Can be called "draw" in each class, so:
Rectangle r;
Circle c;
r.draw(); //Calls Rectangle class’s draw
c.draw(); //Calls Circle class’s draw

• Nothing new here yet…

15-5Copyright © 2016 Pearson Inc. All rights reserved.

Figures Example: center()

• Parent class Figure contains functions
that apply to "all" figures; consider:
center(): moves a figure to center of screen

– Erases 1st, then re-draws

– So Figure::center() would use function draw()
to re-draw

– Complications!

• Which draw() function?

• From which class?

15-6Copyright © 2016 Pearson Inc. All rights reserved.

Figures Example: New Figure

• Consider new kind of figure comes along:
Triangle class

derived from Figure class

• Function center() inherited from Figure
– Will it work for triangles?

– It uses draw(), which is different for each figure!

– It will use Figure::draw() won’t work for triangles

• Want inherited function center() to use function
Triangle::draw() NOT function Figure::draw()
– But class Triangle wasn’t even WRITTEN when

Figure::center() was! Doesn’t know "triangles"!

15-7Copyright © 2016 Pearson Inc. All rights reserved.

Figures Example: Virtual!

• Virtual functions are the answer

• Tells compiler:
– "Don’t know how function is implemented"

– "Wait until used in program"

– "Then get implementation from object
instance"

• Called late binding or dynamic binding
– Virtual functions implement late binding

15-8Copyright © 2016 Pearson Inc. All rights reserved.

Virtual Functions: Another Example

• Bigger example best to demonstrate

• Record-keeping program for automotive
parts store

– Track sales

– Don’t know all sales yet

– 1st only regular retail sales

– Later: Discount sales, mail-order, etc.

• Depend on other factors besides just price, tax

15-9Copyright © 2016 Pearson Inc. All rights reserved.

Virtual Functions: Auto Parts

• Program must:
– Compute daily gross sales

– Calculate largest/smallest sales of day

– Perhaps average sale for day

• All come from individual bills
– But many functions for computing bills will

be added "later"!
• When different types of sales added!

• So function for "computing a bill" will
be virtual!

15-10Copyright © 2016 Pearson Inc. All rights reserved.

Class Sale Definition

• class Sale
{
public:

Sale();
Sale(double thePrice);
double getPrice() const;
virtual double bill() const;
double savings(const Sale& other) const;

private:
double price;

};

15-11Copyright © 2016 Pearson Inc. All rights reserved.

Member Functions
savings and operator <

• double Sale::savings(const Sale& other) const
{

return (bill() – other.bill());
}

• bool operator < (const Sale& first,
const Sale& second)

{
return (first.bill() < second.bill());

}

• Notice BOTH use member function bill()!

15-12Copyright © 2016 Pearson Inc. All rights reserved.

Class Sale

• Represents sales of single item with no
added discounts or charges.

• Notice reserved word "virtual" in
declaration of member function bill

– Impact: Later, derived classes of Sale can
define THEIR versions of function bill

– Other member functions of Sale will use
version based on object of derived class!

– They won’t automatically use Sale’s version!

15-13Copyright © 2016 Pearson Inc. All rights reserved.

Derived Class DiscountSale Defined

• class DiscountSale : public Sale
{
public:

DiscountSale();
DiscountSale(double thePrice,

double the Discount);
double getDiscount() const;
void setDiscount(double newDiscount);
double bill() const;

private:
double discount;

};

15-14Copyright © 2016 Pearson Inc. All rights reserved.

DiscountSale’s Implementation
of bill()

• double DiscountSale::bill() const
{

double fraction = discount/100;
return (1 – fraction)*getPrice();

}

• Qualifier "virtual" does not go in actual
function definition
– "Automatically" virtual in derived class

– Declaration (in interface) not required to have
"virtual" keyword either (but usually does)

15-15Copyright © 2016 Pearson Inc. All rights reserved.

DiscountSale’s Implementation
of bill()

• Virtual function in base class:

– "Automatically" virtual in derived class

• Derived class declaration (in interface)

– Not required to have "virtual" keyword

– But typically included anyway,
for readability

15-16Copyright © 2016 Pearson Inc. All rights reserved.

Derived Class DiscountSale

• DiscountSale’s member function bill()
implemented differently than Sale’s

– Particular to "discounts"

• Member functions savings and "<"

– Will use this definition of bill() for all objects
of DiscountSale class!

– Instead of "defaulting" to version defined in
Sales class!

15-17Copyright © 2016 Pearson Inc. All rights reserved.

Virtual: Wow!

• Recall class Sale written long before
derived class DiscountSale
– Members savings and "<" compiled before

even had ideas of a DiscountSale class

• Yet in a call like:
DiscountSale d1, d2;
d1.savings(d2);

– Call in savings() to function bill() knows to
use definition of bill() from DiscountSale class

• Powerful!

15-18Copyright © 2016 Pearson Inc. All rights reserved.

Virtual: How?

• To write C++ programs:

– Assume it happens by "magic"!

• But explanation involves late binding

– Virtual functions implement late binding

– Tells compiler to "wait" until function is used in
program

– Decide which definition to use based on
calling object

• Very important OOP principle!

15-19Copyright © 2016 Pearson Inc. All rights reserved.

Overriding

• Virtual function definition changed in a
derived class
– We say it’s been "overidden"

• Similar to redefined
– Recall: for standard functions

• So:
– Virtual functions changed: overridden

– Non-virtual functions changed: redefined

15-20Copyright © 2016 Pearson Inc. All rights reserved.

C++11 override keyword

• C++11 includes the override keyword to make
it clear if a function is overridden or redefined

15-21Copyright © 2016 Pearson Inc. All rights reserved.

class Sale
{
public:
…
virtual double bill() const;
…

};

class DiscountSale : public Sale
{
public:
…
double bill() const override;
…

};

Makes it

explicit that this

function

overrides bill()

in the Sale

class

C++11 final keyword
• C++11 includes the final keyword to prevent a

function from being overridden. Useful if a function
is overridden but don’t want a derived classes to
override it again.

15-22Copyright © 2016 Pearson Inc. All rights reserved.

class Sale
{
public:
…
virtual double bill() const final;
…

};

class DiscountSale : public Sale
{
public:
…
double bill() const;
…

};

Cannot

override

Results in

compiler error

Virtual Functions: Why Not All?

• Clear advantages to virtual functions as
we’ve seen

• One major disadvantage: overhead!

– Uses more storage

– Late binding is "on the fly", so programs run slower

• So if virtual functions not needed, should
not be used

15-23Copyright © 2016 Pearson Inc. All rights reserved.

Pure Virtual Functions

• Base class might not have "meaningful"
definition for some of it’s members!

– It’s purpose solely for others to derive from

• Recall class Figure

– All figures are objects of derived classes
• Rectangles, circles, triangles, etc.

– Class Figure has no idea how to draw!

• Make it a pure virtual function:
virtual void draw() = 0;

15-24Copyright © 2016 Pearson Inc. All rights reserved.

Abstract Base Classes

• Pure virtual functions require no definition
– Forces all derived classes to define "their

own" version

• Class with one or more pure virtual
functions is: abstract base class
– Can only be used as base class

– No objects can ever be created from it
• Since it doesn’t have complete "definitions" of all

it’s members!

• If derived class fails to define all pure’s:
– It’s an abstract base class too

15-25Copyright © 2016 Pearson Inc. All rights reserved.

Extended Type Compatibility

• Given:
Derived is derived class of Base

– Derived objects can be assigned to objects
of type Base

– But NOT the other way!

• Consider previous example:

– A DiscountSale "is a" Sale, but reverse
not true

15-26Copyright © 2016 Pearson Inc. All rights reserved.

Extended Type
Compatibility Example

• class Pet
{
public:

string name;
virtual void print() const;

};
class Dog : public Pet
{
public:

string breed;
virtual void print() const;

};

15-27Copyright © 2016 Pearson Inc. All rights reserved.

Classes Pet and Dog

• Now given declarations:
Dog vdog;
Pet vpet;

• Notice member variables name and breed are
public!

– For example purposes only! Not typical!

15-28Copyright © 2016 Pearson Inc. All rights reserved.

Using Classes Pet and Dog

• Anything that "is a" dog "is a" pet:

– vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

– These are allowable

• Can assign values to parent-types, but
not reverse

– A pet "is not a" dog (not necessarily)

15-29Copyright © 2016 Pearson Inc. All rights reserved.

Slicing Problem

• Notice value assigned to vpet "loses" it’s
breed field!
– cout << vpet.breed;

• Produces ERROR msg!

– Called slicing problem

• Might seem appropriate
– Dog was moved to Pet variable, so it should

be treated like a Pet
• And therefore not have "dog" properties

– Makes for interesting philosphical debate

15-30Copyright © 2016 Pearson Inc. All rights reserved.

Slicing Problem Fix

• In C++, slicing problem is nuisance

– It still "is a" Great Dane named Tiny

– We’d like to refer to it’s breed even if it’s been
treated as a Pet

• Can do so with pointers to
dynamic variables

15-31Copyright © 2016 Pearson Inc. All rights reserved.

Slicing Problem Example

• Pet *ppet;
Dog *pdog;
pdog = new Dog;
pdog->name = "Tiny";
pdog->breed = "Great Dane";
ppet = pdog;

• Cannot access breed field of object
pointed to by ppet:
cout << ppet->breed; //ILLEGAL!

15-32Copyright © 2016 Pearson Inc. All rights reserved.

Slicing Problem Example

• Must use virtual member function:
ppet->print();

– Calls print member function in Dog class!

• Because it’s virtual

– C++ "waits" to see what object pointer ppet is
actually pointing to before "binding" call

15-33Copyright © 2016 Pearson Inc. All rights reserved.

Virtual Destructors

• Recall: destructors needed to de-allocate
dynamically allocated data

• Consider:
Base *pBase = new Derived;
…
delete pBase;

– Would call base class destructor even though
pointing to Derived class object!

– Making destructor virtual fixes this!

• Good policy for all destructors to be virtual

15-34Copyright © 2016 Pearson Inc. All rights reserved.

Casting

• Consider:
Pet vpet;
Dog vdog;
…
vdog = static_cast<Dog>(vpet); //ILLEGAL!

• Can’t cast a pet to be a dog, but:
vpet = vdog; // Legal!
vpet = static_cast<Pet>(vdog); //Also legal!

• Upcasting is OK
– From descendant type to ancestor type

15-35Copyright © 2016 Pearson Inc. All rights reserved.

Downcasting

• Downcasting dangerous!
– Casting from ancestor type to descended type

– Assumes information is "added"

– Can be done with dynamic_cast:
Pet *ppet;
ppet = new Dog;
Dog *pdog = dynamic_cast<Dog*>(ppet);
• Legal, but dangerous!

• Downcasting rarely done due to pitfalls
– Must track all information to be added

– All member functions must be virtual

15-36Copyright © 2016 Pearson Inc. All rights reserved.

Inner Workings of Virtual Functions

• Don’t need to know how to use it!

– Principle of information hiding

• Virtual function table

– Compiler creates it

– Has pointers for each virtual member function

– Points to location of correct code for that function

• Objects of such classes also have pointer

– Points to virtual function table

15-37Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Late binding delays decision of which
member function is called until runtime

– In C++, virtual functions use late binding

• Pure virtual functions have no definition

– Classes with at least one are abstract

– No objects can be created from
abstract class

– Used strictly as base for others to derive

15-38Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Derived class objects can be assigned to
base class objects

– Base class members are lost; slicing problem

• Pointer assignments and dynamic objects

– Allow "fix" to slicing problem

• Make all destructors virtual

– Good programming practice

– Ensures memory correctly de-allocated

15-39Copyright © 2016 Pearson Inc. All rights reserved.

