
Chapter 18

Exception
Handling

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Exception Handling Basics
– Defining exception classes

– Multiple throws and catches

– Exception specifications

• Programming Techniques for
Exception Handling
– When to throw exceptions

– Exception class hierarchies

18-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction

• Typical approach to development:

– Write programs assuming things go as planned

– Get "core" working

– Then take care of "exceptional" cases

• C++ exception-handling facilities

– Handle "exceptional" situations

– Mechanism "signals" unusual happening

– Another place in code "deals" with exception

18-3Copyright © 2016 Pearson Inc. All rights reserved.

Exception-Handling Basics

• Meant to be used sparingly

– In "involved" situations

• Difficult to teach such large examples

• Approach:

– Simple toy examples, that would not
normally use exception-handling

– Keep in mind "big picture"

18-4Copyright © 2016 Pearson Inc. All rights reserved.

Toy Example

• Imagine: people rarely run out of milk:
cout << "Enter number of donuts:";
cin >> donuts;
cout << "Enter number of glasses of milk:";
cin >> milk
dpg = donuts/static_cast<double>(milk);
cout << donuts << "donuts.\n";

<< milk << "glasses of milk.\n";
<< "You have " << dpg
<< "donuts for each glass of milk.\n";

• Basic code assumes never run out of milk

18-5Copyright © 2016 Pearson Inc. All rights reserved.

Toy Example if-else

• Notice: If no milkdivide by zero error!

• Program should accommodate unlikely
situation of running out of milk
– Can use simple if-else structure:

if (milk <= 0)
cout << "Go buy some milk!\n";

else
{…}

• Notice: no exception-handling here

18-6Copyright © 2016 Pearson Inc. All rights reserved.

Toy Example with Exception Handling: Display 18.2 Same
Thing Using

Exception Handling

18-7Copyright © 2016 Pearson Inc. All rights reserved.

Toy Example Discussion

• Code between keywords try and catch
– Same code from ordinary version, except

if statement simpler:
if (milk <= 0)

throw donuts;

– Much cleaner code

– If "no milk"  do something exceptional

• The "something exceptional" is provided
after keyword catch

18-8Copyright © 2016 Pearson Inc. All rights reserved.

Toy Example try-catch

• Try block
– Handles "normal" situation

• Catch block
– Handles "exceptional" situations

• Provides separation of normal
from exceptional
– Not big deal for this simple example, but

important concept

18-9Copyright © 2016 Pearson Inc. All rights reserved.

try block

• Basic method of exception-handling is
try-throw-catch

• Try block:
try
{

Some_Code;
}

– Contains code for basic algorithm when all
goes smoothly

18-10Copyright © 2016 Pearson Inc. All rights reserved.

throw

• Inside try-block, when something
unusual happens:
try
{

Code_To_Try
if (exceptional_happened)

throw donuts;
More_Code

}

– Keyword throw followed by exception type

– Called "throwing an exception"

18-11Copyright © 2016 Pearson Inc. All rights reserved.

catch-block

• When something thrown  goes somewhere

– In C++, flow of control goes from try-block to
catch-block
• try-block is "exited" and control passes to catch-block

– Executing catch block called "catching the
exception"

• Exceptions must be "handled" in some
catch block

18-12Copyright © 2016 Pearson Inc. All rights reserved.

catch-block More

• Recall:
catch(int e)
{

cout << e << " donuts, and no milk!\n";
<< " Go buy some milk.\n";

}

• Looks like function definition with
int parameter!

– Not a function, but works similarly

– Throw like "function call"

18-13Copyright © 2016 Pearson Inc. All rights reserved.

catch-block Parameter

• Recall: catch(int e)

• "e" called catch-block parameter

– Each catch block can have at most ONE
catch-block parameter

• Does two things:

1. type name specifies what kind of thrown
value the catch-block can catch

2. Provides name for thrown value caught;
can "do things" with value

18-14Copyright © 2016 Pearson Inc. All rights reserved.

Defining Exception Classes

• throw statement can throw value of
any type

• Exception class
– Contains objects with information to

be thrown

– Can have different types identifying each
possible exceptional situation

– Still just a class
• An "exception class" due to how it’s used

18-15Copyright © 2016 Pearson Inc. All rights reserved.

Exception Class for Toy Example

• Consider:
class NoMilk
{
public:

NoMilk() { }
NoMilk(int howMany) : count(howMany) { }
int getcount() const { return count; }

private:
int count;

};

• throw NoMilk(donuts);
– Invokes constructor of NoMilk class

18-16Copyright © 2016 Pearson Inc. All rights reserved.

Multiple Throws and Catches

• try-block typically throws any number of
exception values, of differing types

• Of course only one exception thrown

– Since throw statement ends try-block

• But different types can be thrown

– Each catch block only catches "one type"

– Typical to place many catch-blocks after each
try-block
• To catch "all-possible" exceptions to be thrown

18-17Copyright © 2016 Pearson Inc. All rights reserved.

Catching

• Order of catch blocks important

• Catch-blocks tried "in order" after try-block
– First match handles it!

• Consider:
catch (…) { }

– Called "catch-all", "default" exception handler

– Catches any exception

– Ensure catch-all placed AFTER more specific
exceptions!
• Or others will never be caught!

18-18Copyright © 2016 Pearson Inc. All rights reserved.

Trivial Exception Classes

• Consider:
class DivideByZero
{ }

• No member variables

• No member functions (except default
constructor)

• Nothing but it’s name, which is enough
– Might be "nothing to do" with exception value

– Used simply to "get to" catch block

– Can omit catch block parameter

18-19Copyright © 2016 Pearson Inc. All rights reserved.

Throwing Exception in Function

• Function might throw exception

• Callers might have different "reactions"
– Some might desire to "end program"

– Some might continue, or do something else

• Makes sense to "catch" exception in
calling function’s try-catch-block
– Place call inside try-block

– Handle in catch-block after try-block

18-20Copyright © 2016 Pearson Inc. All rights reserved.

Throwing Exception
in Function Example

• Consider:
try
{

quotient = safeDivide(num, den);
}
catch (DivideByZero)
{ … }

• safeDivide() function throws DividebyZero
exception

– Handled back in caller’s catch-block

18-21Copyright © 2016 Pearson Inc. All rights reserved.

Exception Specification

• Functions that don’t catch exceptions
– Should "warn" users that it could throw

– But it won’t catch!

• Should list such exceptions:
double safeDivide(int top, int bottom)

throw (DividebyZero);

– Called "exception specification" or "throw list"

– Should be in declaration and definition

– All types listed handled "normally"

– If no throw list  all types considered there

18-22Copyright © 2016 Pearson Inc. All rights reserved.

Throw List

• If exception thrown in function NOT in
throw list:

– No errors (compile or run-time)

– Function unexpected() automatically called

• Default behavior is to terminate

• Can modify behavior

• Same result if no catch-block found

18-23Copyright © 2016 Pearson Inc. All rights reserved.

Throw List Summary

• void someFunction()
throw(DividebyZero, OtherException);

//Exception types DividebyZero or OtherException
//treated normally. All others invoke unexpected()

• void someFunction() throw ();
//Empty exception list, all exceptions invoke
unexpected()

• void someFunction();
//All exceptions of all types treated normally

18-24Copyright © 2016 Pearson Inc. All rights reserved.

Derived Classes

• Remember: derived class objects also
objects of base class

• Consider:
D is derived class of B

• If B is in exception specification 
– Class D thrown objects will also be treated

normally, since it’s also object of class B

• Note: does not do automatic type cast:
– double will not account for throwing an int

18-25Copyright © 2016 Pearson Inc. All rights reserved.

unexpected()

• Default action: terminates program

– No special includes or using directives

• Normally no need to redefine

• But you can:

– Use set_unexpected

– Consult compiler manual or advanced
text for details

18-26Copyright © 2016 Pearson Inc. All rights reserved.

When to Throw Exceptions

• Typical to separate throws and catches

– In separate functions

• Throwing function:

– Include throw statements in definition

– List exceptions in throw list
• In both declaration and definition

• Catching function:

– Different function, perhaps even in different file

18-27Copyright © 2016 Pearson Inc. All rights reserved.

Preferred throw-catch Triad: throw

• void functionA() throw (MyException)
{

…
throw MyException(arg);
…

}

• Function throws exception as needed

18-28Copyright © 2016 Pearson Inc. All rights reserved.

Preferred throw-catch Triad: catch

• Then some other function:
void functionB()
{

…
try
{

…
functionA();
…

}
catch (MyException e)
{ // Handle exception
}
…

}

18-29Copyright © 2016 Pearson Inc. All rights reserved.

Uncaught Exceptions

• Should catch every exception thrown

• If not  program terminates
– terminate() is called

• Recall for functions
– If exception not in throw list: unexpected()

is called
• It in turn calls terminate()

• So same result

18-30Copyright © 2016 Pearson Inc. All rights reserved.

Overuse of Exceptions

• Exceptions alter flow of control
– Similar to old "goto" construct

– "Unrestricted" flow of control

• Should be used sparingly

• Good rule:
– If desire a "throw": consider how to write

program without throw

– If alternative reasonable  do it

18-31Copyright © 2016 Pearson Inc. All rights reserved.

Exception Class Hierarchies

• Useful to have; consider:
DivideByZero class derives from:

ArithmeticError exception class

– All catch-blocks for ArithmeticError also
catch DivideByZero

– If ArithmeticError in throw list, then
DividebyZero also considered there

18-32Copyright © 2016 Pearson Inc. All rights reserved.

Testing Available Memory

• new operator throws bad_alloc exception
if insufficient memory:
try
{

NodePtr pointer = new Node;
}
catch (bad_alloc)
{

cout << "Ran out of memory!";
// Can do other things here as well…

}

• In library <new>, std namespace

18-33Copyright © 2016 Pearson Inc. All rights reserved.

Rethrowing an Exception

• Legal to throw exception IN catch-block!
– Typically only in rare cases

• Throws to catch-block "farther up chain"

• Can re-throw same or new exception
– rethrow;

• Throws same exception again

– throw newExceptionUp;
• Throws new exception to next catch-block

18-34Copyright © 2016 Pearson Inc. All rights reserved.

Example – High Score

• Throwing an exception in a function is
especially helpful when the exception has no
relation to the return value of the function.

• Consider a function that scans through a text
file of high scores and returns the highest
score.

– What should the function return if the file cannot
be opened?

– One strategy is to return a special value, such as a
negative number.

18-35Copyright © 2016 Pearson Inc. All rights reserved.

High Score – No Exception
Handling (1 of 3)

18-36Copyright © 2016 Pearson Inc. All rights reserved.

// Program that outputs the high score from a high scores file.

// Does not use exception handling.

#include <iostream>

#include <fstream>

#include <string>

using std::cout;

using std::endl;

using std::ifstream;

//Function prototypes

int getHighscore();

High Score – No Exception
Handling (2 of 3)

18-37Copyright © 2016 Pearson Inc. All rights reserved.

// Returns the high score in the scores.txt file

int getHighscore()

{

ifstream f;

int high = -1;

f.open("scores.txt");

// Check if the file did not open

if (f.fail())

{

cout << "File could not be opened." << endl;

return -1;

}

int num;

// Scan through each number in the file and return the largest

f >> high;

while (f >> num)

{

if (num > high)

high = num;

}

f.close();

return high;

}

High Score – No Exception
Handling (3 of 3)

18-38Copyright © 2016 Pearson Inc. All rights reserved.

int main()

{

int highscore = getHighscore();

cout << "The high score is " << highscore << endl;

return 0;

}

Sample Dialogue 1 (file exists with values 10, 50, 30)
The high score is 50

Sample Dialogue 2 (the file does not exist)
File could not be opened.

The high score is -1

But what if negative scores are possible? No way to distinguish high scores

from no scores!

High Score Solution – Throw
Exception (1 of 3)

• Throw an exception if there is an IO error and
catch it in main

18-39Copyright © 2016 Pearson Inc. All rights reserved.

// Program that outputs the high score from a high scores file.

// Uses exception handling.

#include <iostream>

#include <fstream>

#include <string>

using std::cout;

using std::endl;

using std::ifstream;

class FileIOError

{};

//Function prototypes

int getHighscore() throw (FileIOError);

High Score Solution – Throw
Exception (2 of 3)

18-40Copyright © 2016 Pearson Inc. All rights reserved.

/ Returns the high score in the scores.txt file

// but throws an exception if the file could not be opened.

// This eliminates possible confusion over the return value.

int getHighscore() throw (FileIOError)

{

ifstream f;

int high = -1;

f.open("cores.txt");

// Check if the file did not open

if (f.fail())

{

throw FileIOError();

}

int num;

// Scan through each number in the file and return the largest

f >> high;

while (f >> num)

{

if (num > high)

high = num;

}

f.close();

return high;

}

High Score Solution – Throw
Exception (3 of 3)

18-41Copyright © 2016 Pearson Inc. All rights reserved.

int main()

{

try

{

int highscore = getHighscore();

cout << "The high score is " << highscore << endl;

}

catch (FileIOError)

{

cout << "Could not open the scores file." << endl;

}

return 0;

}

Summary 1

• Exception handling allows separation of
"normal" cases and "exceptional" cases

• Exceptions thrown in try-block

– Or within a function whose call is in try-block

• Exceptions caught in catch-block

• try-blocks typically followed by more than
one catch-block

– List more specific exceptions first

18-42Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Best used with separate functions
– Especially considering callers might

handle differently

• Exceptions thrown in but not caught in
function, should be listed in throw list

• Exceptions thrown but never caught 
program terminates

• Resist overuse of exceptions
– Unrestricted flow of control

18-43Copyright © 2016 Pearson Inc. All rights reserved.

