
Chapter 19

Standard Template
Library

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Iterators
– Constant and mutable iterators

– Reverse iterators

• Containers
– Sequential containers

– Container adapters stack and queue

– Associative Containers set and map

• Generic Algorithms
– Big-O notation

– Sequence, set, and sorting algorithms

19-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction

• Recall stack and queue data structures

– We created our own

– Large collection of standard data structures exists

– Make sense to have standard portable
implementations of them!

• Standard Template Library (STL)

– Includes libraries for all such data structures
• Like container classes: stacks and queues

19-3Copyright © 2016 Pearson Inc. All rights reserved.

Iterators

• Recall: generalization of a pointer

– Typically even implemented with pointer!

• "Abstraction" of iterators

– Designed to hide details of implementation

– Provide uniform interface across different
container classes

• Each container class has "own" iterator type

– Similar to how each data type has own
pointer type

19-4Copyright © 2016 Pearson Inc. All rights reserved.

Manipulating Iterators

• Recall using overloaded operators:

– ++, --, ==, !=

– *
• So if p is an iterator variable, *p gives access to data

pointed to by p

• Vector template class

– Has all above overloads

– Also has members begin() and end()
c.begin(); //Returns iterator for 1st item in c
c.end(); //Returns "test" value for end

19-5Copyright © 2016 Pearson Inc. All rights reserved.

Cycling with Iterators

• Recall cycling ability:
for (p=c.begin();p!=c.end();p++)

process *p //*p is current data item

• Big picture so far…

• Keep in mind:

– Each container type in STL has own iterator types

• Even though they’re all used similarly

19-6Copyright © 2016 Pearson Inc. All rights reserved.

Display 19.1
Iterators Used with a Vector (1 of 2)

19-7Copyright © 2016 Pearson Inc. All rights reserved.

1 //Program to demonstrate STL iterators.

2 #include <iostream>

3 #include <vector>

4 using std::cout;

5 using std::endl;

6 using std::vector;

7 int main()

8 {

9 vector<int> container;

10 for (int i = 1; i <= 4; i++)

11 container.push_back(i);

12 cout << "Here is what is in the container:\n";

13 vector<int>::iterator p;

14 for (p = container.begin(); p != container.end(); p++)

15 cout << *p << " ";

16 cout << endl;

17 cout << "Setting entries to 0:\n";

18 for (p = container.begin(); p != container.end(); p++)

19 *p = 0;

Display 19.1
Iterators Used with a Vector (2 of 2)

19-8Copyright © 2016 Pearson Inc. All rights reserved.

20 cout << "Container now contains:\n";

21 for (p = container.begin(); p !=

container.end(); p++)

22 cout << *p << " ";

23 cout << endl;

24 return 0;

25 }

SAMPLE DIALOGUE

Here is what is in the container:

1 2 3 4

Setting entries to 0:

Container now contains:

0 0 0 0

Vector Iterator Types

• Iterators for vectors of ints are of type:
std::vector<int>::iterator

• Iterators for lists of ints are of type:
std::list<int>::iterator

• Vector is in std namespace, so need:
using std::vector<int>::iterator;

19-9Copyright © 2016 Pearson Inc. All rights reserved.

Kinds of Iterators

• Different containers different iterators

• Vector iterators

– Most "general" form

– All operations work with vector iterators

– Vector container great for iterator examples

19-10Copyright © 2016 Pearson Inc. All rights reserved.

Random Access:
Display 19.2 Bidirectional and
Random-Access Iterator Use

19-11Copyright © 2016 Pearson Inc. All rights reserved.

Iterator Classifications

• Forward iterators:
– ++ works on iterator

• Bidirectional iterators:
– Both ++ and – work on iterator

• Random-access iterators:
– ++, --, and random access all work

with iterator

• These are "kinds" of iterators, not types!

19-12Copyright © 2016 Pearson Inc. All rights reserved.

Constant and Mutable Iterators

• Dereferencing operator’s behavior dictates

• Constant iterator:
– * produces read-only version of element

– Can use *p to assign to variable or output,
but cannot change element in container
• E.g., *p = <anything>; is illegal

• Mutable iterator:
– *p can be assigned value

– Changes corresponding element in container

– i.e.: *p returns an lvalue

19-13Copyright © 2016 Pearson Inc. All rights reserved.

Reverse Iterators

• To cycle elements in reverse order

– Requires container with bidirectional iterators

• Might consider:
iterator p;
for (p=container.end();p!=container.begin(); p--)

cout << *p << " " ;

– But recall: end() is just "sentinel", begin() not!

– Might work on some systems, but not most

19-14Copyright © 2016 Pearson Inc. All rights reserved.

Reverse Iterators Correct

• To correctly cycle elements in reverse
order:
reverse_iterator p;
for (rp=container.rbegin();rp!=container.rend(); rp++)

cout << *rp << " " ;

• rbegin()

– Returns iterator at last element

• rend()

– Returns sentinel "end" marker

19-15Copyright © 2016 Pearson Inc. All rights reserved.

Compiler Problems

• Some compilers problematic with iterator
declarations

• Consider our usage:
using std::vector<char>::iterator;
…
iterator p;

• Alternatively:
std::vector<char>::iterator p;

• And others…
– Try various forms if compiler problematic

19-16Copyright © 2016 Pearson Inc. All rights reserved.

Auto

• The C++11 auto keyword can make your code
much more readable when it comes to
templates and iterators.

• Instead of

vector<int>::iterator p = v.begin();

• We can do the same thing much more
compactly with auto

auto p = v.begin();

19-17Copyright © 2016 Pearson Inc. All rights reserved.

Containers

• Container classes in STL
– Different kinds of data structures

– Like lists, queues, stacks

• Each is template class with parameter for particular data type
to be stored
– e.g., Lists of ints, doubles or myClass types

• Each has own iterators
– One might have bidirectional, another might just have forward

iterators

• But all operators and members have same meaning

19-18Copyright © 2016 Pearson Inc. All rights reserved.

Sequential Containers

• Arranges list data
– 1st element, next element, … to last element

• Linked list is sequential container
– Earlier linked lists were "singly linked lists"

• One link per node

• STL has no "singly linked list"
– Only "doubly linked list": template class list

19-19Copyright © 2016 Pearson Inc. All rights reserved.

Display 19.4 Two Kinds of Lists

19-20Copyright © 2016 Pearson Inc. All rights reserved.

Display 19.5
Using the list Template Class(1 of 2)

19-21Copyright © 2016 Pearson Inc. All rights reserved.

1 //Program to demonstrate the STL template class list.

2 #include <iostream>

3 #include <list>

4 using std::cout;

5 using std::endl;

6 using std::list;

7 int main()

8 {

9 list<int> listObject;

10 for (int i = 1; i <= 3; i++)

11 listObject.push_back(i);

12 cout << "List contains:\n";

13 list<int>::iterator iter;

14 for (iter = listObject.begin(); iter != listObject.end();

iter++)

15 cout << *iter << " ";

16 cout << endl;

Display 19.5
Using the list Template Class(2 of 2)

19-22Copyright © 2016 Pearson Inc. All rights reserved.

17 cout << "Setting all entries to 0:\n";

18 for (iter = listObject.begin(); iter != listObject.end();

iter++)

19 *iter = 0;

20 cout << "List now contains:\n";

21 for (iter = listObject.begin(); iter != listObject.end();

iter++)

22 cout << *iter << " ";

23 cout << endl;

24 return 0;

25 }

SAMPLE DIALOGUE

List contains:

1 2 3

Setting all entries to 0:

List now contains:

0 0 0

Container Adapters stack and queue

• Container adapters are template classes

– Implemented "on top of" other classes

• Example:
stack template class by default implemented on
top of deque template class

– Buried in stack’s implementation is deque where all data
resides

• Others:
queue, priority_queue

19-23Copyright © 2016 Pearson Inc. All rights reserved.

Specifying Container Adapters

• Adapter template classes have "default"
containers underneath

– But can specify different underlying container

– Examples:
stack template class any sequence container
priority_queue default is vector, could be others

• Implementing Example:
stack<int, vector<int> >

– Makes vector underlying container for stack

19-24Copyright © 2016 Pearson Inc. All rights reserved.

Note space between > >

Associative Containers

• Associative container: simple database

• Store data

– Each data item has key

• Example:
data: employee’s record as struct
key: employee’s SSN

– Items retrieved based on key

19-25Copyright © 2016 Pearson Inc. All rights reserved.

set Template Class

• Simplest container possible

• Stores elements without repetition

• 1st insertion places element in set

• Each element is own key

• Capabilities:
– Add elements

– Delete elements

– Ask if element is in set

19-26Copyright © 2016 Pearson Inc. All rights reserved.

More set Template Class

• Designed to be efficient

– Stores values in sorted order

– Can specify order:
set<T, Ordering> s;

• Ordering is well-behaved ordering relation that
returns bool

• None specified: use < relational operator

19-27Copyright © 2016 Pearson Inc. All rights reserved.

Program Using the set Template
Class (1 of 2)

19-28Copyright © 2016 Pearson Inc. All rights reserved.

1 //Program to demonstrate use of the set template class.

2 #include <iostream>

3 #include <set>

4 using std::cout;

5 using std::endl;

6 using std::set;

7 int main()

8 {

9 set<char> s;

10 s.insert(’A’);

11 s.insert(’D’);

12 s.insert(’D’);

13 s.insert(’C’);

14 s.insert(’C’);

15 s.insert(’B’);

16 cout << "The set contains:\n";

17 set<char>::const_iterator p;

18 for (p = s.begin(); p != s.end(); p++)

19 cout << *p << " ";

20 cout << endl;

Program Using the set Template
Class (2 of 2)

19-29Copyright © 2016 Pearson Inc. All rights reserved.

21 cout << "Set contains 'C': ";

22 if (s.find('C')==s.end())

23 cout << " no " << endl;

24 else

26 cout << " yes " << endl;

27 cout << "Removing C.\n";

28 s.erase(’C’);

29 for (p = s.begin(); p != s.end(); p++)

30 cout << *p << " ";

31 cout << endl;

32 cout << "Set contains 'C': ";

33 if (s.find('C')==s.end())

34 cout << " no " << endl;

35 else

36 cout << " yes " << endl;

37 return 0;

38 }

SAMPLE DIALOGUE

The set contains:

A B C D

Set contains 'C': yes

Removing C.

A B D

Set contains 'C': no

Map Template Class

• A function given as set of ordered pairs

– For each value first, at most one value
second in map

• Example map declaration:
map<string, int> numberMap;

• Can use [] notation to access the map

– For both storage and retrieval

• Stores in sorted order, like set

– Second value can have no ordering impact
19-30Copyright © 2016 Pearson Inc. All rights reserved.

Program Using the map Template
Class (1 of 3)

19-31Copyright © 2016 Pearson Inc. All rights reserved.

1 //Program to demonstrate use of the map template class.

2 #include <iostream>

3 #include <map>

4 #include <string>

5 using std::cout;

6 using std::endl;

7 using std::map;

8 using std::string;

9 int main()

10 {

11 map<string, string> planets;

12 planets["Mercury"] = "Hot planet";

13 planets["Venus"] = "Atmosphere of sulfuric acid";

14 planets["Earth"] = "Home";

15 planets["Mars"] = "The Red Planet";

16 planets["Jupiter"] = "Largest planet in our solar system";

17 planets["Saturn"] = "Has rings";

18 planets["Uranus"] = "Tilts on its side";

19 planets["Neptune"] = "1500 mile per hour winds";

20 planets["Pluto"] = "Dwarf planet";

Program Using the map Template
Class (2 of 3)

19-32Copyright © 2016 Pearson Inc. All rights reserved.

21 cout << "Entry for Mercury - " << planets["Mercury"]

22 << endl << endl;

23 if (planets.find("Mercury") != planets.end())

24 cout << "Mercury is in the map." << endl;

25 if (planets.find("Ceres") == planets.end())

26 cout << "Ceres is not in the map." << endl << endl;

27 cout << "Iterating through all planets: " << endl;

28 map<string, string>::const_iterator iter;

29 for (iter = planets.begin(); iter != planets.end(); iter++)

30 {

31 cout << iter->first << " - " << iter->second << endl;

32 }

The iterator will output the map in order sorted by the key. In this case

the output will be listed alphabetically by planet.

33 return 0;

34 }

Program Using the map Template
Class (3 of 3)

19-33Copyright © 2016 Pearson Inc. All rights reserved.

SAMPLE DIALOGUE

Entry for Mercury - Hot planet

Mercury is in the map.

Ceres is not in the map.

Iterating through all planets:

Earth - Home

Jupiter - Largest planet in our solar system

Mars - The Red Planet

Mercury - Hot planet

Neptune - 1500 mile per hour winds

Pluto - Dwarf planet

Saturn - Has rings

Uranus - Tilts on its side

Venus - Atmosphere of sulfuric acid

Use Initialization, Ranged For, and
auto with Containers

• C++11’s ranged for, auto, and initialization features
make it easier to work with Containers

• Consider:

• We can easily iterate through each with:

19-34Copyright © 2016 Pearson Inc. All rights reserved.

map<int, string> personIDs = {
{1,"Walt"},
{2,"Kenrick"}

};
set<string> colors = {"red","green","blue"};

for (auto p : personIDs)

cout << p.first << " " << p.second << endl;

for (auto p : colors)

cout << p << " ";

Efficiency

• STL designed with efficiency as
important consideration

– Strives to be optimally efficient

• Example: set, map elements stored in
sorted order for fast searches

• Template class member functions:

– Guaranteed maximum running time

– Called "Big-O" notation, an "efficiency"-rating

19-35Copyright © 2016 Pearson Inc. All rights reserved.

Generic Algorithms

• Basic template functions

• Recall algorithm definition:
– Set of instructions for performing a task

– Can be represented in any language

– Typically thought of in "pseudocode"

– Considered "abstraction" of code
• Gives important details, but not find code details

• STL’s algorithms in template functions:
– Certain details provided only

• Therefore considered "generic algorithms"

19-36Copyright © 2016 Pearson Inc. All rights reserved.

Running Times

• How fast is program?
– "Seconds"?

– Consider: large input? .. small input?

• Produce "table"
– Based on input size

– Table called "function" in math
• With arguments and return values!

– Argument is input size:
T(10), T(10,000), …

• Function T is called "running time"

19-37Copyright © 2016 Pearson Inc. All rights reserved.

Table for Running Time Function:
Display 19.15 Some Values
of a Running Time Function

19-38Copyright © 2016 Pearson Inc. All rights reserved.

Consider Sorting Program

• Faster on smaller input set?

– Perhaps

– Might depend on "state" of set

• "Mostly" sorted already?

• Consider worst-case running time

– T(N) is time taken by "hardest" list

• List that takes longest to sort

19-39Copyright © 2016 Pearson Inc. All rights reserved.

Counting Operations

• T(N) given by formula, such as:
T(N) = 5N + 5

– "On inputs of size N program runs for
5N + 5 time units"

• Must be "computer-independent"

– Doesn’t matter how "fast" computers are

– Can’t count "time"

– Instead count "operations"

19-40Copyright © 2016 Pearson Inc. All rights reserved.

Counting Operations Example

• int I = 0;
bool found = false;
while ((I < N) && !found)

if (a[I] == target)
found = true;

else
I++;

• 5 operations per loop iteration:
<, &&, !, [], ==, ++

• After N iterations, final three: <, &&, !

• So: 6N+5 operations when target not found

19-41Copyright © 2016 Pearson Inc. All rights reserved.

Big-O Notation

• Recall: 6N+5 operations in "worst-case"

• Expressed in "Big-O" notation

– Some constant "c" factor where
c(6N+5) is actual running time
• c different on different systems

– We say code runs in time O(6N+5)

– But typically only consider "highest term"
• Term with highest exponent

– O(N) here

19-42Copyright © 2016 Pearson Inc. All rights reserved.

Big-O Terminology

• Linear running time:
– O(N)—directly proportional to input size N

• Quadratic running time:
– O(N2)

• Logarithmic running time:
– O(log N)

• Typically "log base 2"

• Very fast algorithms!

19-43Copyright © 2016 Pearson Inc. All rights reserved.

Display 19.16
Comparison of Running Times

19-44Copyright © 2016 Pearson Inc. All rights reserved.

Container Access Running Times

• O(1) - constant operation always:
– Vector inserts to front or back

– deque inserts

– list inserts

• O(N)
– Insert or delete of arbitrary element in vector

or deque (N is number of elements)

• O(log N)
– set or map finding

19-45Copyright © 2016 Pearson Inc. All rights reserved.

Nonmodifying Sequence Algorithms

• Template functions operating
on containers

– NO modification of container contents

• Generic find function

– Typical example

– Can be used with any STL sequence
container class

19-46Copyright © 2016 Pearson Inc. All rights reserved.

Display 19.17
The Generic find Function (1 of 3)

19-47Copyright © 2016 Pearson Inc. All rights reserved.

1 //Program to demonstrate use of the generic find function.

2 #include <iostream>

3 #include <vector>

4 #include <algorithm>

5 using std::cin;

6 using std::cout;

7 using std::endl;

8 using std::vector;

9 using std::find;

10 int main()

11 {

12 vector<char> line;

13 cout << "Enter a line of text:\n";

14 char next;

15 cin.get(next);

16 while (next != ’\n’)

17 {

18 line.push_back(next);

19 cin.get(next);

20 }

Display 19.17
The Generic find Function (2 of 3)

19-48Copyright © 2016 Pearson Inc. All rights reserved.

21 vector<char>::const_iterator where;

22 where = find(line.begin(), line.end(), ’e’);

23 //where is located at the first occurrence of ’e’ in v.

24 vector<char>::const_iterator p;

25 cout << "You entered the following before you entered your

first e:\n";

26 for (p = line.begin(); p != where; p++)

27 cout << *p;

28 cout << endl;

29 cout << "You entered the following after that:\n";

30 for (p = where; p != line.end(); p++)

31 cout << *p;

32 cout << endl;

33 cout << "End of demonstration.\n";

34 return 0;

35 }

If find does not find what it is looking for, it returns its second argument.

Display 19.17
The Generic find Function (3 of 3)

19-49Copyright © 2016 Pearson Inc. All rights reserved.

SAMPLE DIALOGUE 1

Enter a line of text

A line of text.

You entered the following before you entered your first e:

A lin

You entered the following after that:

e of text.

End of demonstration.

SAMPLE DIALOGUE 2

Enter a line of text

I will not!

You entered the following before you entered your first e:

I will not!

You entered the following after that:

End of demonstration.

Modifying Sequence Algorithms

• STL functions that change
container contents

• Recall: adding/removing elements from
containers can affect other iterators!
– list, slist guarantee no iterator changes

– vector, deque make NO such guarantee

• Always watch which iterators are
assured to be changed/unchanged

19-50Copyright © 2016 Pearson Inc. All rights reserved.

Set Algorithms

• STL generic set operation functions

• All assume containers stored in
sorted order

• Containers set, map, multiset, multimap
– DO store in sorted order, so all set functions apply

• Others, like vector, are not sorted
– Should not use set functions

19-51Copyright © 2016 Pearson Inc. All rights reserved.

Sorting Algorithms

• STL contains two template functions:

1. sort range of elements

2. merge two sorted ranges of elements

• Guaranteed running time O(N log N)

– No sort can be faster

– Function guarantees fastest possible sort

19-52Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Iterator is "generalization" of a pointer
– Used to move through elements of container

• Container classes with iterators have:
– Member functions end() and begin() to

assist cycling

• Main kinds of iterators:
– Forward, bi-directional, random-access

• Given constant iterator p, *p is read-only version of
element

19-53Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Given mutable iterator p *p can be assigned value

• Bidirectional container has reverse iterators allowing reverse
cycling

• Main STL containers: list, vector, deque
– stack, queue: container adapter classes

• set, map, multiset, multimap containers store in sorted order

• STL implements generic algorithms
– Provide maximum running time guarantees

19-54Copyright © 2016 Pearson Inc. All rights reserved.

