
Chapter 20

Patterns
and UML

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Patterns

– Adapter pattern

– Model-View-Controller pattern

– Sorting pattern and it’s efficiency

– Pattern formalism

• UML

– History of UML

– UML class diagrams

– Class interactions

20-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction
• Patterns and UML

– Software design tools

– Programming-language independent
• Assuming object-oriented-capable

• Pattern
– Like "ordinary" pattern in other contexts

• An "outline" of software task

– Can result in different code in different but
similar tasks

• UML
– Graphical language for OOP design

20-3Copyright © 2016 Pearson Inc. All rights reserved.

Patterns

• Patterns are design principles
– Apply across variety of software applications

– Must also apply across variety of situations

– Must make assumptions about
application domain

• Example:
Iterator pattern applies to containers of
almost any kind

20-4Copyright © 2016 Pearson Inc. All rights reserved.

Pattern Example: Iterators

• Recall iterators

• Iterator pattern applies to containers of
almost any kind

• 1st described as "abstract"

– As ways of cycling thru any data in any container

• Then gave specific applications

– Such as list iterator, constant list iterator,
reverse list iterator, etc.

20-5Copyright © 2016 Pearson Inc. All rights reserved.

Consider No Patterns

• Iterators
– Imagine huge amount of detail if all container

iterators presented separately!

– If each had different names for begin(), end()

– To make "sense" of it, learners might make
pattern themselves!

• Until pattern developed, all were different
– "Seemed" similar, but not organized

• Consider containers as well
– Same issues!

20-6Copyright © 2016 Pearson Inc. All rights reserved.

Adapter Pattern

• Transforms one class into different class
– With no changes to underlying class

– Only "adding" to interface

• Recall stack and queue template classes
– Both can choose underlying class used to

store data:
stack<vector<int>> -- int stack under vector
stack<list<int>> -- int stack underlying list

– All cases underlying class not changed
• Only interface is added

20-7Copyright © 2016 Pearson Inc. All rights reserved.

Adapter Pattern Interface

• How to add interface?
– Implementation detail

– Not part of pattern

• But… two ways:
– Example: for stack adapter:

• Underlying container class could be member
variable of stack class

• Or stack class could be derived class of
underlying container class

20-8Copyright © 2016 Pearson Inc. All rights reserved.

Model-View-Controller Pattern

• Way of dividing I/O task out
– Model part: heart of application

– View part: output
• Displays picture of model’s state

– Controller part: input
• Relays commands from user to model

• A divide and conquer strategy
– One big task three smaller tasks

• Each with well-defined responsibilities

20-9Copyright © 2016 Pearson Inc. All rights reserved.

Model-View-Controller Pattern

• Any application can fit

• But particularly suited to GUI
design projects

– Where view can actually be visualization of
state of model

20-10Copyright © 2016 Pearson Inc. All rights reserved.

Display 20.1
Model-View-Controller Pattern

20-11Copyright © 2016 Pearson Inc. All rights reserved.

A Sorting Pattern Example

• Similar pattern among "most-efficient"
sorting algorithms:

– Recursive

– Divide list into smaller lists

– Then recursively sort smaller lists

– Recombine two sorted lists obtaining one
final sorted list

20-12Copyright © 2016 Pearson Inc. All rights reserved.

Sorting Pattern

• Clearly a divide-and-conquer strategy

• Heart of pattern:
int splitPt = split(a, begin, end);
sort(a, begin, splitPt);
sort(a, splitPt, end);
join(a, begin, splitPt, end);

• Note no details on how split and join
are defined
– Different definitions will yield different

sorting algorithms

20-13Copyright © 2016 Pearson Inc. All rights reserved.

Function split

• Rearranges elements
– In interval [begin, end]

• Divides interval at split point, splitPt

• Two new intervals then sorted
– [begin, splitPt) – first half

– [splitPt, end) – second half

• No details in pattern
– Nothing about how rearrange and divide

takes place

20-14Copyright © 2016 Pearson Inc. All rights reserved.

Function join

• Combines two sorted intervals

– Produces final sorted version

• Again, no details

– join function could perform many ways

20-15Copyright © 2016 Pearson Inc. All rights reserved.

Sample Realization
of Sorting Pattern: Mergesort

• Simplest "realization" of sorting pattern is
mergesort

• Definition of split very simple

– Just divides array into two intervals

– No rearranging of elements

• Definition of join complex!

– Must sort subintervals

– Then merge, copying to temporary array

20-16Copyright © 2016 Pearson Inc. All rights reserved.

Mergesort’s join Function

• Sequence:

– Compare smallest elements in
each interval

– Smaller of two next position in
temporary array

• Repeated until through both intervals

– Result is final sorted array

20-17Copyright © 2016 Pearson Inc. All rights reserved.

Sort Pattern Complexity

• Trade-off between split and join

– Either can be simple at expense of other

– e.g., In mergesort, split function simple at
expense of complicated join function

– Could vary in other algorithms

• Comes down to "who does work?"

20-18Copyright © 2016 Pearson Inc. All rights reserved.

Consider Quicksort

• Complexity switch

– join function simple, split function complex

• Library files

– Include files "mergesort.cpp", "quicksort.cpp"
both give two different realizations of same
sort pattern

– Provide same input and output!

20-19Copyright © 2016 Pearson Inc. All rights reserved.

Quicksort Realization

• A sophisticated split function

– Arbitrary value chosen, called "splitting value"

– Array elements rearranged "around" splitting value
• Those less than in front, greater than in back

• Splitting value essentially "divides" array

– Two "sides" then sorted recursively

• Finally combined with join

– Which does nothing!

20-20Copyright © 2016 Pearson Inc. All rights reserved.

Sorting Pattern Efficiency

• Most efficient realizations "divide" list into
two chunks
– Such as half and half

– Inefficient if divided into "few" and "rest"

• Mergesort: O(N log N)

• Quicksort:
– Worst case: O(N2) (if split uneven)

– Average case: O(N log N)
• In practice, one of best sort algorithms

20-21Copyright © 2016 Pearson Inc. All rights reserved.

Pragmatics and Patterns

• Patterns are guides, not requirements

– Not compelled to follow all fine details

– Can take "liberties" and adjust for particular needs
• Like efficiency issues

• Pattern formalism

– Standard techniques exist for using patterns

– Place of patterns in sofware design process
not yet clear
• Is clear that many basic patterns are useful

20-22Copyright © 2016 Pearson Inc. All rights reserved.

UML

• Unified Modeling Language

• Attempt to produce "human-oriented"
ways of representing programs
– Like pseudocode: think of problem, without

details of language

• Pseudocode very standard, very used
– But it’s a linear, algebraic representation

• Prefer "graphical" representation
– Enter UML

20-23Copyright © 2016 Pearson Inc. All rights reserved.

UML Design

• Designed to reflect/be used with
object-oriented programming philosophy

• A promising effort!

• Many companies have adopted UML
formalism in software design process

20-24Copyright © 2016 Pearson Inc. All rights reserved.

History of UML

• Developed with OOP

• Different groups developed own graphical
representations for OOP design

• 1996:

– Booch, Jacobsen, Rumbaugh released
early version of UML

– Intended to "bring together" various other
representations to produce standard for all
object-oriented design

20-25Copyright © 2016 Pearson Inc. All rights reserved.

UML Lately

• Since 1996:

– Developed and revised with feedback from
OOP community

• Today:

– UML standard maintained and certified by
Object Management Group (OMG)

• Non-profit organization that promotes use of
object-oriented techniques

20-26Copyright © 2016 Pearson Inc. All rights reserved.

UML Class Diagrams

• As classes are central to OOP…

• Class diagram is simplest of UML
graphical representations to use

– Three-sectioned box contains:

• Class name

• Data specifications

• Actions (class member functions)

20-27Copyright © 2016 Pearson Inc. All rights reserved.

Class Diagrams Example:
Display 20.6 A UML Class Diagram

20-28Copyright © 2016 Pearson Inc. All rights reserved.

Class Diagrams Example Notes

• Data section:
– + sign indicates public member

– - sign indicates private member

– # indicates protected member

– Our example: both private (Typical in OOP)

• Actions:
– Same +, -, # for public, private, protected

• Need not provide all details
– Missing members indicated with ellipsis (…)

20-29Copyright © 2016 Pearson Inc. All rights reserved.

Class Interactions

• Class diagrams alone of little value
– Just repeat of class interface, often "less"

• Must show how objects of various
classes interact
– Annotated arrows show information flow

between class objects
• Recall Model-View-Controller Pattern

– Annotations also for class groupings into
library-like aggregates
• Such as for inheritance

20-30Copyright © 2016 Pearson Inc. All rights reserved.

More Class Interactions

• UML is extensible

– If your needs not in UML, add them
to UML!

• Framework exists for this purpose

– Prescribed standard for additions

– Ensures different software developers
understand each other’s UML

20-31Copyright © 2016 Pearson Inc. All rights reserved.

Summary

• Patterns are design principles
– Apply across variety of software applications

• Pattern can provide framework for
comparing related algorithms" efficiency

• Unified Modeling Language (UML)
– Graphical representation language

– Designed for object-oriented software design

• UML is one formalism used to
express patterns

20-32Copyright © 2016 Pearson Inc. All rights reserved.

