
Chapter 12

Streams 
and File I/O

Copyright © 2016 Pearson, Inc. 
All rights reserved.



Learning Objectives

• I/O Streams
– File I/O

– Character I/O

• Tools for Stream I/O
– File names as input

– Formatting output, flag settings

• Stream Hierarchies
– Preview of inheritance

• Random Access to Files

12-2Copyright © 2016 Pearson Inc. All rights reserved.



Introduction

• Streams

– Special objects

– Deliver program input and output

• File I/O

– Uses inheritance

• Not covered until chapter 14

– File I/O very useful, so covered here

12-3Copyright © 2016 Pearson Inc. All rights reserved.



Streams

• A flow of characters

• Input stream

– Flow into program
• Can come from keyboard

• Can come from file

• Output stream

– Flow out of program
• Can go to screen

• Can go to file

12-4Copyright © 2016 Pearson Inc. All rights reserved.



Streams Usage

• We’ve used streams already

– cin

• Input stream object connected to keyboard

– cout

• Output stream object connected to screen

• Can define other streams

– To or from files

– Used similarly as cin, cout

12-5Copyright © 2016 Pearson Inc. All rights reserved.



Streams Usage Like cin, cout

• Consider:

– Given program defines stream inStream
that comes from some file:
int theNumber;
inStream >> theNumber;

• Reads value from stream, assigned to theNumber

– Program defines stream outStream that goes
to some file
outStream << "theNumber is " << theNumber;

• Writes value to stream, which goes to file

12-6Copyright © 2016 Pearson Inc. All rights reserved.



Files

• We’ll use text files

• Reading from file

– When program takes input

• Writing to file

– When program sends output

• Start at beginning of file to end

– Other methods available

– We’ll discuss this simple text file access here

12-7Copyright © 2016 Pearson Inc. All rights reserved.



File Connection

• Must first connect file to stream object

• For input:

– File  ifstream object

• For output:

– File  ofstream object

• Classes ifstream and ofstream

– Defined in library <fstream>

– Named in std namespace

12-8Copyright © 2016 Pearson Inc. All rights reserved.



File I/O Libraries

• To allow both file input and output in your
program:

#include <fstream>
using namespace std;

OR
#include <fstream>
using std::ifstream;
using std::ofstream;

12-9Copyright © 2016 Pearson Inc. All rights reserved.



Declaring Streams

• Stream must be declared like any other
class variable:

ifstream inStream;
ofstream outStream;

• Must then "connect" to file:
inStream.open("infile.txt");

– Called "opening the file"

– Uses member function open

– Can specify complete pathname

12-10Copyright © 2016 Pearson Inc. All rights reserved.



Streams Usage

• Once declared  use normally!
int oneNumber, anotherNumber;
inStream >> oneNumber >> anotherNumber;

• Output stream similar:
ofstream outStream;
outStream.open("outfile.txt");
outStream << "oneNumber = " << oneNumber

<< " anotherNumber = "
<< anotherNumber;

– Sends items to output file

12-11Copyright © 2016 Pearson Inc. All rights reserved.



File Names

• Programs and files

• Files have two names to our programs

– External file name
• Also called "physical file name"

• Like "infile.txt"

• Sometimes considered "real file name"

• Used only once in program (to open)

– Stream name
• Also called "logical file name"

• Program uses this name for all file activity

12-12Copyright © 2016 Pearson Inc. All rights reserved.



Closing Files

• Files should be closed

– When program completed getting input or
sending output

– Disconnects stream from file

– In action:
inStream.close();
outStream.close();
• Note no arguments

• Files automatically close when program ends

12-13Copyright © 2016 Pearson Inc. All rights reserved.



File Flush

• Output often "buffered"

– Temporarily stored before written to file

– Written in "groups"

• Occasionally might need to force writing:
outStream.flush();

– Member function flush, for all output streams

– All buffered output is physically written

• Closing file automatically calls flush()

12-14Copyright © 2016 Pearson Inc. All rights reserved.



File Example: 
Display 12.1 Simple File 

Input/Output (1 of 2)

12-15Copyright © 2016 Pearson Inc. All rights reserved.



File Example: 
Display 12.1 Simple File 

Input/Output (1 of 2)

12-16Copyright © 2016 Pearson Inc. All rights reserved.



Appending to a File

• Standard open operation begins with 
empty file
– Even if file exists  contents lost

• Open for append:
ofstream outStream;
outStream.open("important.txt", ios::app);

– If file doesn’t exist  creates it

– If file exists  appends to end

– 2nd argument is class ios defined constant
• In <iostream> library, std namespace

12-17Copyright © 2016 Pearson Inc. All rights reserved.



Alternative Syntax for File Opens

• Can specify filename at declaration

– Passed as argument to constructor

• ifstream inStream;
inStream.open("infile.txt");

EQUIVALENT TO:

ifstream inStream("infile.txt");

12-18Copyright © 2016 Pearson Inc. All rights reserved.



Checking File Open Success

• File opens could fail
– If input file doesn’t exist

– No write permissions to output file

– Unexpected results

• Member function fail()
– Place call to fail() to check stream operation

success
inStream.open("stuff.txt");
if (inStream.fail())
{

cout << "File open failed.\n";
exit(1);

}

12-19Copyright © 2016 Pearson Inc. All rights reserved.



Character I/O with Files

• All cin and cout character I/O same 
for files!

• Member functions work same:

– get, getline

– put, putback, 

– peek, ignore

12-20Copyright © 2016 Pearson Inc. All rights reserved.



Checking End of File

• Use loop to process file until end
– Typical approach

• Two ways to test for end of file
– Member function eof()

inStream.get(next);
while (!inStream.eof())
{

cout << next;
inStream.get(next);

}

• Reads each character until file ends

• eof() member function returns bool

12-21Copyright © 2016 Pearson Inc. All rights reserved.



End of File Check with Read

• Second method

– read operation returns bool value!
(inStream >> next)
• Expression returns true if read successful

• Returns false if attempt to read beyond end of file

– In action:
double next, sum = 0;
while (inStream >> next)

sum = sum + next;
cout << "the sum is " << sum << endl;

12-22Copyright © 2016 Pearson Inc. All rights reserved.



Tools: File Names as Input

• Stream open operation

– Argument to open() is string type

– Can be literal (used so far) or variable
char fileName[16];
ifstream inStream;
cout << "Enter file name: ";
cin >> fileName;
inStream.open(fileName);

– Provides more flexibility 

12-23Copyright © 2016 Pearson Inc. All rights reserved.



Formatting Output 
with Stream Functions

• Recall chapter 1 "magic formula":
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

• Outputs numbers in "money" 
form (12.52)

• Can use on any output stream
– File streams have same member functions

as cout object

12-24Copyright © 2016 Pearson Inc. All rights reserved.



Output Member Functions

• Consider:
outStream.setf(ios::fixed);
outStream.setf(ios::showpoint);
outStream.precision(2);

• Member function precision(x)

– Decimals written with "x" digits after decimal

• Member function setf()

– Allows multitude of output flags to be set

12-25Copyright © 2016 Pearson Inc. All rights reserved.



More Output Member Functions

• Consider:
outStream.width(5);

• Member function width(x)

– Sets width to "x" for outputted value

– Only affects "next" value outputted

– Must set width before each value in order to
affect all
• Typical to have "varying" widths

• To form "columns"

12-26Copyright © 2016 Pearson Inc. All rights reserved.



Flags

• Recall: member function setf()

– Sets condition of output flags

• All output streams have setf() member

• Flags are constants in class ios

– In library <iostream>, std namespace

12-27Copyright © 2016 Pearson Inc. All rights reserved.



setf() Examples

• Common flag constants:
– outStream.setf(ios::fixed);

• Sets fixed-point notation (decimal)

– outStream.setf(ios::showPoint)
• Always include decimal point

– outStream.setf(ios::right);
• Sets right-justification

• Set multiple flags with one call:
outStream.setf(ios::fixed | ios::showpoint |

ios::right);

12-28Copyright © 2016 Pearson Inc. All rights reserved.



Manipulators

• Manipulator defined:
"A function called in nontraditional way"

– Can have arguments

– Placed after insertion operator

– Do same things as member functions!
• In different way

– Common to use both "together"

• setw() and setprecision() are in library
<iomanip>, std namespace

12-29Copyright © 2016 Pearson Inc. All rights reserved.



Manipulator Example: setw()

• setw() manipulator:
cout << "Start" << setw(4) << 10

<< setw(4) << 20 << setw(6) << 30;

– Results in:
Start  10  20    30

• Note: setw() affects only NEXT 
outputted value

– Must include setw() manipulator before each
outputted item to affect all

12-30Copyright © 2016 Pearson Inc. All rights reserved.



Manipulator  setprecision()

• setprecision() manipulator:
cout.setf(ios::fixed | ios::showpoint);

cout << "$" << setprecision(2) << 10.3 << "  "
<< "$" << 20.5 << endl;

• Results in:
$10.30  $20.50

12-31Copyright © 2016 Pearson Inc. All rights reserved.



Saving Flag Settings

• Flag settings "stay" until changed

• Precision and setf flags can be saved
and restored

– Function precision() returns current setting
if called with no arguments

– Member function flags() provides 
similar capability

12-32Copyright © 2016 Pearson Inc. All rights reserved.



Saving Flag Settings Example

• void outputStuff(ofstream& outStream)
{

int precisionSetting = outStream.precision();
long flagSettings = outStream.flags();
outStream.setf(ios::fixed | ios::showpoint);
outStream.precision(2);
outStream.precision(precisionSetting);
outStream.flags(flagSettings);

}

• Function to save & restore "typical" settings
– Call: outputStuff(myStream);

12-33Copyright © 2016 Pearson Inc. All rights reserved.



Restoring Default setf Settings

• Can also restore default settings:
cout.setf(0, ios::floatfield);

• Not necessarily the "last" setting!

• Default values are implementation-
dependent

• Does not reset precision settings

– Only setf settings

12-34Copyright © 2016 Pearson Inc. All rights reserved.



Stream Hierarchies

• Class Relationships

– "Derived from"
• One class obtained from another class

• Then features are "added"

– Example:

– Input file streams class is derived from class
of all input streams
• It then adds open and close member functions

– i.e.: ifstream is derived from istream

12-35Copyright © 2016 Pearson Inc. All rights reserved.



Class Inheritance "Real" Example

• Class of all convertibles is derived from
class of all automobiles

– Every convertible is an automobile

– Convertible "adds features" to automobile

12-36Copyright © 2016 Pearson Inc. All rights reserved.



Stream Class Inheritance

• Consider:

• If D is derived class of class B 
– All objects of type D are also of type B

– e.g., A convertible is also an automobile

• Regarding streams:
– An ifstream object is also an istream object

– Should use istream objects for parameters
• More objects can be plugged in!

12-37Copyright © 2016 Pearson Inc. All rights reserved.



Stream Class Inheritance Example

12-38Copyright © 2016 Pearson Inc. All rights reserved.



Stream Class Inheritance 
Example Calls

• Considering previous functions:

• twoSumVersion1(fileIn); // Legal!

• twoSumVersion1(cin); // ILLEGAL!
– Because cin is not of type ifstream!

• twoSumVersion2(fileIn); // Legal!

• twoSumVersion2(cin); // Legal!
– More versatile

– istream parameter accepts both objects

12-39Copyright © 2016 Pearson Inc. All rights reserved.



stringstream

• The stringstream class is another example of 
inheritance

– Derived from the iostream class

– Allows you to perform stream operations to or 
from a string, similar to how you perform stream 
operations from cin or from a file

• Shares or inherits the same methods

• Useful for converting strings to other data 
types and vice versa

12-40Copyright © 2016 Pearson Inc. All rights reserved.



Using stringstream

• To use
#include <sstream>

using std::stringstream;

• Create an object of type stringstream
stringstream ss;

• To clear and initialize to blank
ss.clear( );

ss.str("");

• To create a string from other variables
ss << c << " " << num; // c is a char, num is an int

12-41Copyright © 2016 Pearson Inc. All rights reserved.



Using stringstream

• To extract variables from a string
ss << "x 10";

ss >> c >> num;

// c is set to 'x' and num is set to 10

12-42Copyright © 2016 Pearson Inc. All rights reserved.

• This class is sometimes useful when reading a 
string from some source and extracting fields from 
the string



stringstream Demo (1 of 3)

12-43Copyright © 2016 Pearson Inc. All rights reserved.

//Demonstration of the stringstream class.  This program takes

//a string with a name followed by scores.  It uses a

//stringstream to extract the name as a string, the scores

//as integers, then calculates the average score.  The name

//and average are placed into a new string.

#include <iostream>

#include <string>

#include <sstream>

using namespace std;

int main( )

{

stringstream ss;

string scores = "Luigi 70 100 90";



stringstream demo (2 of 3)

12-44Copyright © 2016 Pearson Inc. All rights reserved.

// Clear the stringstream

ss.str("");

ss.clear();

// Put the scores into the stringstream

ss << scores;

// Extract the name and average the scores

string name = "";

int total = 0, count = 0, average = 0;

int score;

ss >> name; // Read the name

while (ss >> score)  // Read until the end of the string

{

count++;

total += score;

}



stringstream demo (3 of 3)

12-45Copyright © 2016 Pearson Inc. All rights reserved.

if (count > 0)

{

average = total / count;

}

// Clear the stringstream

ss.clear();

ss.str("");

// Put in the name and average

ss << "Name: " << name << " Average: " << average;

// Output as a string

cout << ss.str() << endl;

return 0;

}



Random Access to Files

• Sequential Access

– Most commonly used

• Random Access

– Rapid access to records

– Perhaps very large database

– Access "randomly" to any part of file

– Use  fstream objects

• input and output

12-46Copyright © 2016 Pearson Inc. All rights reserved.



Random Access Tools

• Opens same as istream or ostream
– Adds second argument

– fstream rwStream;
rwStream.open("stuff", ios::in | ios:: out);
• Opens with read and write capability

• Move about in file
– rwStream.seekp(1000);

• Positions put-pointer at 1000th byte

– rwStream.seekg(1000);
• Positions get-pointer at 1000th byte

12-47Copyright © 2016 Pearson Inc. All rights reserved.



Random Access Sizes

• To move about must know sizes

– sizeof() operator determines number of bytes
required for an object:
sizeof(s) //Where s is string s = "Hello"
sizeof(10)
sizeof(double)
sizeof(myObject)

– Position put-pointer at 100th record of objects:

rwStream.seekp(100*sizeof(myObject) – 1);

12-48Copyright © 2016 Pearson Inc. All rights reserved.



Summary 1

• Streams connect to files with open operation

• Member function fail() checks successes

• Stream member functions format output

– e.g., width, setf, precision

– Same usage for cout (screen) or files

• Stream types can be formal parameters

– But must be call-by-reference

12-49Copyright © 2016 Pearson Inc. All rights reserved.



Summary 2

• istream (no "f") parameters accept cin
or ifstream objects as arguments

• ostream (no "f) parameters accept cout
or ofstream objects as arguments

• Member function eof

– Used to test for end of input file 

• Streams use inheritance to share common 
methods and variables in an “is-a” 
relationship between classes

12-50Copyright © 2016 Pearson Inc. All rights reserved.


