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Abstract

This paper argues that we should seek the golden middle way
between dynamically and statically typed languages.

1 Introduction

<NOTE to="reader"> Please note that this paper is still very
much work in progress and as such the presentation is unpol-
ished and possibly incoherent. Obviously many citations to
related and relevant work are missing. We did however do our
best to make it provocative. </NOTE>

Advocates of static typing argue that the advantages of static
typing include earlier detection of programming mistakes (e.g.
preventing adding an integer to a boolean), better documenta-
tion in the form of type signatures (e.g. incorporating number
and types of arguments when resolving names), more opportu-
nities for compiler optimizations (e.g. replacing virtual calls by
direct calls when the exact type of the receiver is known stat-
ically), increased runtime efficiency (e.g. not all values need
to carry a dynamic type), and a better design time developer
experience (e.g. knowing the type of the receiver, the IDE can
present a drop-down menu of all applicable members).

Static typing fanatics try to make us believe that “well-typed
programs cannot go wrong”. While this certainly sounds im-
pressive, it is a rather vacuous statement. Static type checking
is a compile-time abstraction of the runtime behavior of your
program, and hence it is necessarily only partially sound and
incomplete. This means that programs can still go wrong be-
cause of properties that are not tracked by the type-checker,
and that there are programs that while they cannot go wrong
cannot be type-checked. The impulse for making static typing
less partial and more complete causes type systems to become
overly complicated and exotic as witnessed by concepts such
as “phantom types” [II] and “wobbly types” [10]. This is like
trying to run a marathon with a ball and chain tied to your leg
and triumphantly shouting that you nearly made it even though
you bailed out after the first mile.
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Advocates of dynamically typed languages argue that static
typing is too rigid, and that the softness of dynamically lan-
guages makes them ideally suited for prototyping systems with
changing or unknown requirements, or that interact with other
systems that change unpredictably (data and application in-
tegration). Of course, dynamically typed languages are indis-
pensable for dealing with truly dynamic program behavior such
as method interception, dynamic loading, mobile code, runtime
reflection, etc.

In the mother of all papers on scripting [16], John Ousterhout
argues that statically typed systems programming languages
make code less reusable, more verbose, not more safe, and less
expressive than dynamically typed scripting languages. This
argument is parroted literally by many proponents of dynami-
cally typed scripting languages. We argue that this is a fallacy
and falls into the same category as arguing that the essence of
declarative programming is eliminating assignment. Or as John
Hughes says [8], it is a logical impossibility to make a language
more powerful by omitting features. Defending the fact that
delaying all type-checking to runtime is a good thing, is playing
ostrich tactics with the fact that errors should be caught as
early in the development process as possible.

We are interesting in building data-intensive three-tiered en-
terprise applications [14]. Perhaps surprisingly, dynamism is
probably more important for data intensive programming than
for any other area where people traditionally position dynamic
languages and scripting. Currently, the vast majority of digital
data is not fully structured, a common rule of thumb is less then
5 percent [13]. In many cases, the structure of data is only stat-
ically known up to some point, for example, a comma separated
file, a spreadsheet, an XML document, but lacks a schema that
completely describes the instances that a program is working
on. Even when the structure of data is statically known, people
often generate queries dynamically based on runtime informa-
tion, and thus the structure of the query results is statically
unknown.

Hence it should be clear that there is a big need for languages
and databases that can deal with (semi-structured) data in a
much more dynamic way then we have today. In contrast to
pure scripting languages and statically typed general purpose
languages, data intensive applications need to deal seamlessly
with several degrees of typedness.



2 When Programmers Say “l Need Dy-
namic/Static Typing”, They Really Mean

Instead of providing programmers with a black or white choice
between static or dynamic typing, we should instead strive for
softer type systems [4]. That is, static typing where possible,
dynamic typing when needed. Unfortunately there is a discon-
tinuity between contemporary statically typed and dynamically
typed languages as well as a huge technical and cultural gap
between the respective language communities.

The problems surrounding hybrid statically and dynamically
typed languages are largely not understood, and both camps
often use arguments that cut no ice. We argue that there is no
need to polarize the differences, and instead we should focus
on leveraging the strengths of each side.

2.1 | want type inference

Requiring explicit type declarations is usually unnecessary and
always a nuisance. For instance, no programming language
should force programmers to write pleonasms such as:

Button b = new Button();
string s = "Doh!";

We have known for at least 35 years how to have the compiler
infer the (most general) static types of local variables [3]. Not
requiring programmers to write types as dynamic languages do
is great; but not inferring the types of these variables whenever
possible is literally throwing away the baby with the bath water.

Type inference not only allows you to omit type information
when declaring a variable; type information can also be used
to determine which constructors to call when creating object
graphs. In the following example, the compiler infers from the
declaration Button b, that it should construct a new Size ob-
ject, assign the Height and Width fields to the integers 20 and
40 respectively, create a new Button instance b and assign the
Size object to the Size field of b:

Button b = {
Size = { Height = 20, Width = 40 }
}

This economy of notation essentially relies on the availabil-
ity of static type information T to seed the type-directed
e <: T ~ e’ translation of expression e into fully explicit
code e’. In other words, static type information actaully allows
programs to be more concise then their equivalent dynamically
typed counterparts.

2.2 | want contracts

Static typing provides a false sense of safety, since it can only
prove the absence of certain errors statically [I7]. Hence, even
if a program does not contain any static type-errors, this does
not imply that you will not get any unwanted runtime errors.
Current type-checkers basically only track the types of expres-
sions and make sure that you do not assign a variable with a
value of an incompatible type, that the arguments to primitive

operations are of the right type (but not that the actual oper-
ation succeeds), and that the receiver of a method call can be
resolved statically (but not that the actual call succeeds).

However in general programmers want to express more ad-
vanced contracts about their code [I5] [I]. For example, an
invariant that the value of one variable is always less than the
value of another, a precondition that an argument to a method
call is within a certain range, or a postcondition that the result
of a method call satisfies some condition.

The compiler should verify as much of a contract P for some
expression e as it can statically, say @, signaling an error only
when it can statically prove that the invariants are violated at
some point, and optionally deferring the rest of the checking
@ = P to runtime via the witness f:

Qle) » e, Q= P~ f

Pe) ~ fle')

Notice the correspondence with the type-directed translation
rule above. The translation of expression e is driven by the
proof that P(e) holds.

2.3 | want (coercive) subtyping

Subtype polymorphism is another technique that facilitates
type-safe reuse that has been around for about 35 years [5].
The idea of subtype polymorphism is that anywhere a value of
some type, Dog say, is expected, you can actually pass a value
of any subtype, Poodle say, of Dog. The type Dog records
the assumptions the programmer makes about values of that
type, for instance the fact that all dogs have a Color and can
void Bark(). The fact that Poodle is a subtype of Dog is a
promise that all assumptions about Dog are also met by Poodle,
or as some people sometimes say a Poodle isa Dog.

Subtypes can extend their super types by adding new members,
for example IsShaved, and they can specialize their super type
by overriding existing members, for example by producing a
nasty yepping instead of a normal bark. Sometimes overriding
a member completely changes the behavior of that member.

The real power of inheritance, and in particular of overriding,
comes from virtual, or late-bound, calls, where the actual mem-
ber that is invoked is determined by the dynamic type of the
receiver object. For example, even though the static type of
d is dog, it will have a yepping bark since its dynamic type is
actually Poodle:

Dog d = new Poodle();
d.Bark(); // yep, yep

In some sense, objects, even without inheritance and virtual
methods, are just higher-order functions conveniently packed
together in clumps, so all advantages of using higher-order func-
tions [8] immediately carry over to objects.

Coercive subtyping is an extension of subtyping where a subtype
relation between types S and T induces a witness that actually



coerces a value of type S into a value of type T [2].

e<: S ~e, 8 < T~ f

e <: T ~ f(e')

Notice that this is just another instance of rule for contracts
above; indeed typing is a very simple form of contracts.

Coercive subtyping is extremely powerful; driven by the type of
sub-expressions, the compiler insert coercions to bridge the gap
between inferred and required types. Perhaps the most useful
example is “auto-boxing” from value types to reference types.
In the example below, the compiler infers that the rhs of the
assignment has type int while the type of the lhs is object
and hence it inserts a boxing coercion from int to object:

object x = 4711; // new Integer(4711)

Type-directed coercions can be applied to arbitrary operations.
For example assume that we have a type int? that denotes nul-
lable (optional) integers. Based on static type information, the
compiler can automatically “lift” addition on normal integers
to addition on nullable integers:

int? x = null; int? y = 13;
X+y;

int? z

The Cw language takes type-directed lifting to the extreme
by radically generalizing member access. In Cw the . is
overloaded to lift member access over structural types such
as collections, discriminated unions, and tuples. For exam-
ple, given a collection of buttons bs we can get access all
their BackColor properties using the expression bs.BackColor.
The compiler translates this into the explicit iteration
{ foreach(b in bs) yield return b.BackColor; }.

Obviously, type-directed syntactic sugar relies static type infor-
mation. While in principle it would be possible to do automatic
lifting at runtime, this would be quite inefficient. It immedi-
ately rules out value types, since these do not carry run-time
type information in their unboxed form. On the other hand, we
sometimes do want to do truly dynamic member resolution and
dispatch. For example consider the following use of reflection
in C* to obtain the BackColor member of a button:

new Button();

b.GetType ()
.GetField ("BuckColor")
.GetValue(b);

object b
object ¢

Admittedly, this code looks pretty horrible, and even though it
seems to be “statically’ typed, it really is not. In this particular
case .GetValue("BuckColor") returns null and hence the
subsequent .GetValue(b) will throw an exception. Wouldn't
it be much more convenient if the compiler would use the same
type-directed lifting such that we could just us ordinary member
access syntax:

object b = new Button();
object c¢ = b.BuckColor;

Now this is not anymore type unsafe than the previous code,
but definitively more concise. Visual Basic.NET provides this
mechanism when using Option Implicit and a similar exten-
sion has been proposed for the Mono C* compiler.

There is no reason to stop at allowing late bound access to just
reflection as in the above example. There are numerous other
APIs that use a similar interpretative access/invocation protocol
such as ADO.Net, remoting, XPathNavigator, etc. For exam-
ple, the SqlDataReader in ADO.Net class exposes a method
object GetValue(int) to access the value of a particular col-
umn of the current row.

SqlDataReader r =
new SqlCommand(SELECT Name, Age FROM ...", c)
.ExecuteReader () ;
while (r.Read()) {
.; r.GetValue(0); .; r.GetValue(1); ...;

}

L)

Just like the reflection example, the fact that the datareader
APl is “statically” typed is a red herring since the API is a
statically typed interpretative layer over an basically untyped
API. As such, it does not provide any guarantees that well-
typed programs cannot go wrong at runtime. So why not let
the compiler somehow translate r.Name into r.GetValue(0)
so that you can write a much more natural call:

SqlDataReader r =
new SqlCommand("SELECT Name, Age From ...", c)
.ExecuteReader() ;
while (r.Read()) {
.; r.Name; .; r.Age; ...;

}

L)

Instead of exposing all kinds of different dynamic interpretative
APIs, we should look for ways to expose them in a uniform way
via normal member access syntax.

2.4 | want Generics

The principles of abstraction and parametrization apply to types
as well as to programs. By allowing types and programs to be
parametrized by types, or even type constructors, it becomes
possible to create highly reusable libraries, while maintaining
the benefits of compile-time type checking [19]. For example,
we can define lazy streams of elements of arbitrary type T as
follows:

interface IEnumerator<T> {
bool MoveNext(); T Current { get; }
}

In combination with type-inference, you hardly ever need to
write types explicitly. In the example below, the compiler infers
that variable xs has type IEnumerator<string>, and hence
that variable x has type string:



var xs = {
yield return "Hello";
yield return "World";
};

foreach(x in xs) Console.WriteLine(x);

In languages without generics and without subtype polymor-
phism, you need to write a new sort function for any element
type, and any kind of collection. Using generics you can instead
write a single function that sorts arbitrary collections of arbi-
trary element types void Sort<T>(...). There is no need to
lose out on type safety. However, in order to sort a collection,
we should be able to compare the elements, for example using
the IComparer<T> interface:

interface IComparer<T> { int Compare(T a, T b) }

There are several ways to obtain an IComparer, first of all we
can (a) dynamically downcast an element in the collection to an
IComparer thereby potentially loosing some static type guaran-
tees, or (b) we can pass an instance of IComparer as an addi-
tional argument, thereby burden the programmer with thread-
ing this additional parameters throughout the program, or (c)
we can add a constraint to the type parameter of the sort func-
tion to constrain it to types T that implement IComparer<T>
only, thereby complicating the type system considerably.

In some sense solutions (a) and (c) are very similar, in both
cases the programmer somehow declares the assumption that
the type T implements IComparer<T>. In principle the com-
piler could infer the constraint for solution (c) from the cast in
solution (a). In Haskell, member names uniquely determine the
type class in which they are defined, so you do not even need to
downcast for the compiler to infer the constraint [6]. Interest-
ingly in Haskell, the instance state and the function members
of classes are separated and the compiler passes the implemen-
tation of ICompare<T> as an additional (hidden) argument to
each function that has an ICompare<T> constraint, and also
automagically inserts instances of the actual implementations.

An alternative solution to passing additional arguments around
as in solution (b) is to use dynamically scoped variables or
implicit arguments [7] [12], something that many dynamic and
scripting languages support. In the example below, comparer is
dynamically scoped variable that will be used to pass an explicit
comparer as an implicit argument.

void Sort<T>
([implicit]IComparer<T> comparer) {...}

IComparer<T> comparer =
new CaseInsensitiveComparer();

myCollection.Sort();

Dynamically scoped variables do not require us to completely
abandon static typing. In fact, we think that dynamic scoping
becomes more understandable if the fact that a function relies
on a dynamically scoped variable is apparent in it's type. In this
case, the static type of Sort includes the fact that it expects a
variable comparer to be in scope when Sort is being called, or
else the implicit parameter is propagated and that code itself

now recursively relies on a variable comparer to be in scope
when called. Note that this is similar to the throws clause in
Java, and in fact, dynamic variables can be implemented in a
very similar manner as exception handling.

2.5 | want (unsafe) covariance

Array covariance allows you to pass a value of type Button[]
say where a value of type Control[] is expected. Array co-
variance gracefully blends the worlds of parametric and subtype
polymorphism and this is what makes statically typed arrays
useful. There is no such thing as a free lunch, and array co-
variance comes with a price since each write operation into an
array (potentially) requires a runtime check otherwise it would
be possible to create a Button[] array that actually contains a
string:

object[] xs = new Button[]{ new Button() };
xs[0] = "Hello World";

Without covariance, we would be forced use parametric poly-
morphism everywhere we want to pass a parametric type, like
array, covariantly. This causes type parameters to spread
like a highly contagious disease. = Another option is to
make the static type system more complicated by introduc-
ing variance annotations [9] when declaring a generic type
or method as in CLR generics (FooBar<+T> where T: Baz),
when using a generic type as in Java's wild-card types
(FooBar<? extends Baz)[21].

Despite the added complexity, variance annotations and wild-
card types do not provide the full flexibility of “unsafe” covari-
ance. Before generics was introduced in Java or C¥, it was
not even possible to define generic collections, and hence there
was no static type-checking whatsoever. It is interesting to
note that suddenly the balance has swung to the other extreme
where people now suddenly lean over backward to make their
code statically typed.

Instead of allowing covariance by making the type-system more
complicated, we should allow covariance just like arrays by
adding a few runtime checks. Note that this is impossible in an
implementation of generics that uses erasure like in Java since
the runtime checks require the underlying element type.

2.6 | want ad-hoc relationships and prototype inher-
itance

Statically typed (object-oriented) languages such as C* and
Java force programmers to make premature commitments
about inter-entity relationships [18]. For example, at the mo-
ment that you define a class Person you have to have the divine
insight to define all possible relationships that a person can have
with any other possible object or keep type open:

class Person { ...; Dog myDog; }

The reason is that objects embed relationships as pointers
(links) within their instance, much like HTML pages embed
hyperlinks as nested <A href="..."> elements. In the rela-
tional model, much like in traditional hypertext systems, it is



possible to create relationships after the fact. The bad way
(BadDog below) is to embed the relationship to the parent en-
tity when defining the child entity; the good way (Dog) is to
introduce an explicit external “link table” MyDogs that relates
persons and dogs:

table Person{ ...; int PID; }

table BadDog { ...; int PID; int DID; }
table Dog { ...; int DID; }

table MyDogs { ...; int PID; int DID; }

The difficulty with the relational approach is that navigating
relationships requires a join on PID and DID. Assuming that we
have the power in the “.” we can simply use normal member
access and the compiler will automatically insert the witnessing
join between p and the MyDogs table:

Person p;
Collection<Dog> ds = p.MyDogs;

The link table approach is nice in the sense that it allows the
participating types to be sealed, while still allowing the illusion
of adding properties to the parent types after the fact. In cer-
tain circumstances this is still too static, and we would like to
actually add or overwrite members on a per instance basis [22].

var p = new Object();
p-Name = "John Doe";
p.Age = Of
DateTime.Today - new DateTime(19963,4,18);
};

This protype-style programming is not any more unsafe than
using a HashTable<string, object>, which as we have con-
cluded before is not any more unsafe than programming against
statically typed objects. It is important that new members show
up as regular methods when reflection over the object instance,
which requires deep execution engine support.

object ¢ = p.GetType() .GetField("Name")
.GetValue(p);

2.7 1 want lazy evaluation

A common misconception is that loose typing yields a strong
glue for composing components into applications. The proto-
typical argument is that since all Unix shell programs consume
and produce streams of bytes, any two such programs can be
connected together by attaching the output of one program to
the input of the other to produce a meaningful result. Quite the
contrary, the power of the Unix shell lies in the fact that pro-
grams consume and produce lazy streams of bytes. Examples
like 1s | more work because the more command lazily sucks
data produced by the 1s command.

The fact that pipes use bytes as the least common denomi-
nator actually diminishes the power of the mechanism since it
is practically infeasible to introduce any additional structure,
into flat streams of bytes without support for serializing and
deserializing the more structured data that is manipulated by
the programs internally. So what you really want to glue to-
gether applications is lazy streams of structured objects; this is

the abstraction provided by lazy lists, Unix pipes, asynchronous
messaging systems, etc.

Using XML instead of byte streams as a wire-format is one step
forward, but three steps backwards. While XML allows dealing
with semi-structured data, which as we argue is what we should
strive for, this comes at an enormous expense. XML is a prime
example of retarded innovation; it makes the life of the low-
level plumbing infrastructure easier by putting the burden on
the actual users by letting them parse the data themselves by
having them write abstract syntax tree, introducing an alien
data model (Infoset) and an overly complicated and verbose
type system (XSD) neither of which blends in very well with
the paradigm that programmers use to write their actual code.

The strong similarity between the type-system of the CLR and
the JVM execution environments makes it possible to define
a common schema language, much in the style of Corba or
COM IDL, or ASN/1, that maps easily to both environments,
together with some standard (binary) encoding of transporting
values over the wire. This would be a superior solution to the
problem that XML attempts to solve.

2.8 | want higher-order functions, serialization, and
code literals

Many people believe that the ability to dynamically eval strings
as programs is what sets dynamic languages apart from static
languages. This is simply not true; any language that can dy-
namically load code in some form or another, either via DLLs
or shared libraries or dynamic class loading, has the ability to
do eval. The real question is whether your really need runtime
code generation, and if so, what is the best way to achieve this.

In many cases we think that people use eval as a poor man’s
substitute for higher-order functions. Instead of passing around
a function and call it, they pass around a string and eval it.
Often this is unnecessary, but it is always dangerous especially
if parts of the string come from an untrusted source. This is
the classical script-code injection threat.

Another common use of eval is to deserialize strings back into
(primitive) values, for example eval("1234"). This is legiti-
mate and if eval would only parse and evaluate values, this
would also be quite safe. This requires that (all) values are
expressible within in the syntax of the language.

A final use of eval that we want to mention is for partial eval-
uation, multi-stage programming, or meta programming. We
argue that in that case strings are not really the most opti-
mal structure to represent programs and it is much better to
use programs to represent programs, i.e. C+--style templates,
quasiquote/unquote as in Lisp, or code literals as in the various
multi-stage programming languages [20].

3 Conclusion

Static typing is a powerful tool to help programmers express
their assumptions about the problem they are trying to solve
and allows them to write more concise and correct code. Deal-
ing with uncertain assumptions, dynamism and (unexepected)
change is becoming increasingly important in a loosely couple



distributed world. Instead of hammering on the differences be-
tween dynamically and statically typed languages, we should
instead strive for a peaceful integration of static and dynamic
aspect in the same language. Static typing where possible, dy-
namic typing when needed!
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