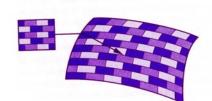
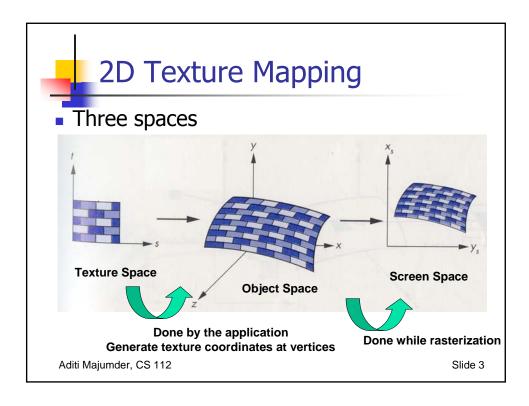


CS 112 - Texture Mapping


Aditi Majumder, CS 112

Slide 1



What is Texture Mapping?

- Color is not sufficient for realistic appearances
- Wrap (Map) a image on a surface
 - Like a wall-paper
 - Like gift wrapping

Aditi Majumder, CS 112

Texture Space to Object Space

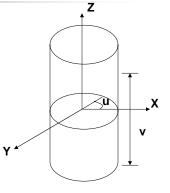
- Rectangular image mapped to arbitrary surfaces
 - The texture will get stretched differently at different places on the surface based on the curvature
 - Imagine wrapping a rectangular image on a sphere
 - Two Ways to do it

Aditi Majumder, CS 112

Method 1

- Find the parametric representation of the surface defined by parameters (u,v)
 - Since 2D object embedded in real world
- Map (u,v) to (s,t) (s,t) varies from 0 to 1
- Find the (u,v) for each vertex in the tessalated object and find the corresponding (s,t)

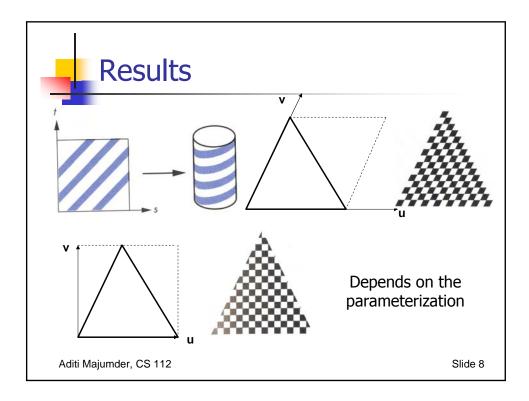
Aditi Majumder, CS 112


Slide 5

Example: Open Cylinder

- u angle, -180 ≤ u ≤ 180
- v height, 0 ≤ v ≤ 1
- $x = R \cos(u)$
- $y = R \sin(u)$
- z = v
- Map (s,t) to (u,v)
 - s = (u+180/360)
 - t = v

Aditi Majumder, CS 112


Example: Sphere

- u horizontal angle
 - -180 ≤ u ≤ 180
- v vertical angle
 - $-90 \le v \le 90$
- x = R cos (v) cos (u)
- y = R cos (v) sin (u)
- z = R sin (v)
- Map (s,t) to (u,v)
 - s = (u+180)/360
 - t = (v+90)/180

Aditi Majumder, CS 112

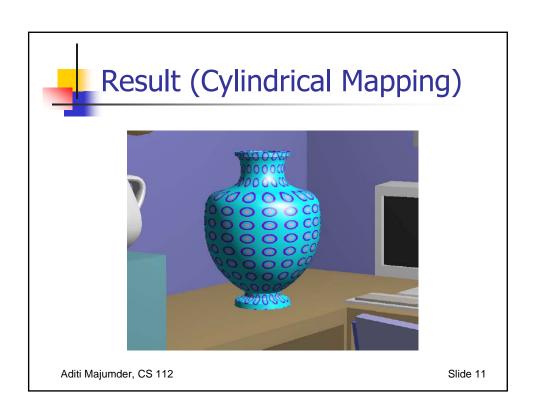
Slide 7

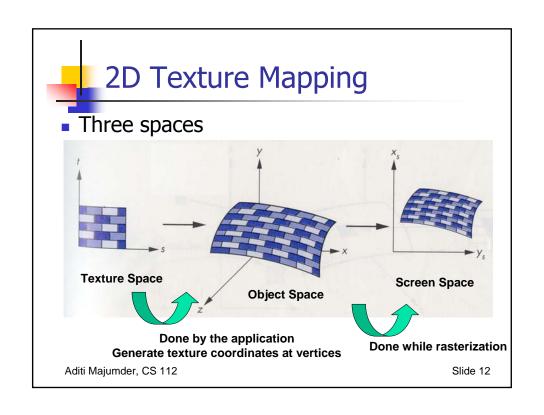
Z

Method 2: Intermediate Geometry

- Difficult to parameterize arbitrary geometry
- Define intermediate simple surface and parameterize it: a plane, sphere or cylinder
- Enclose arbitrary geometry within simple geometry
- More close these shapes are, better the mapping

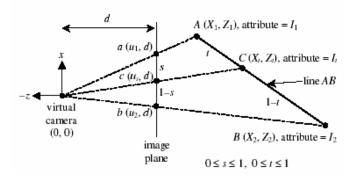
Aditi Majumder, CS 112


Slide 9



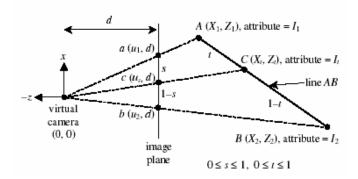
Result (Planar Mapping)

Aditi Majumder, CS 112



Object Space to Screen Space

- The texture coordinates are known in the object space
- Needs to be interpolated in the screen space


Aditi Majumder, CS 112

Slide 13

Interpolation of Attributes

$$I_t = I_1 + t(I_2 - I_1) \qquad t = \frac{sZ_1}{sZ_1 + (1 - s)Z_2} \qquad I_t = \left(\frac{I_1}{Z_1} + s\left(\frac{I_2}{Z_2} - \frac{I_1}{Z_1}\right)\right) / \frac{1}{Z_t}$$

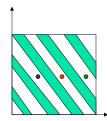
Aditi Majumder, CS 112

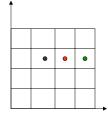
Sampling the Texture

- You have FP numbers between 0 and 1 for each pixel
- How do you get the colors from the texture image?

Aditi Majumder, CS 112

Slide 15


Point Sampling


- Multiply by the texture size to generate another FP value
- Round off the FP values to integers (GL_NEAREST)
- Pick the color of the integer texel

Aditi Majumder, CS 112

Aliasing Problems

- •Miss the stripes completely
- ■Texture is not adequately sampled by the pixels

Aditi Majumder, CS 112

Slide 17

Linear Interpolation

- Multiply by the texture size to generate another FP value
- Interpolate the color from the four nearest texels using bilinear interpolation (GL_LINEAR)
- Does not remove aliasing completely since sampling is still inadequate

Aditi Majumder, CS 112

Mipmapping

- Ideally, we should filter the image and subsample it to reduce the frequency content
- Then we should pick the color from this subsampled image to avoid aliasing
- The lower frequency content will make the sampling adequate

Aditi Majumder, CS 112

Slide 19

Mipmapping

- Special way of storing images of different resolutions
- T₁:128x128 (RGB)
- T₂:64x64 (RGB)
- T₃:32x32 (RGB)
- And so on...
- Choose appropriate resolution based on screen space projection

Size: 4 x original texture

T₁(R)	T₁(G)	
T₁(B)	T ₂ (R)	T ₂ (G)
	T ₂ (B)	

Aditi Majumder, CS 112

Point sampling in Mipmap

- Can be done in two ways
 - Round off and sample one color from the texture
 - Interpolate from the nearest four texels of the texture

Aditi Majumder, CS 112