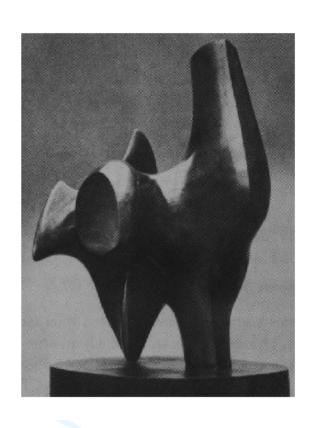
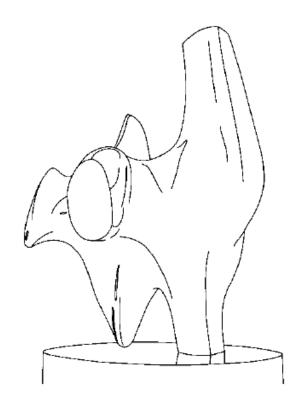
Edge Detection cs 111

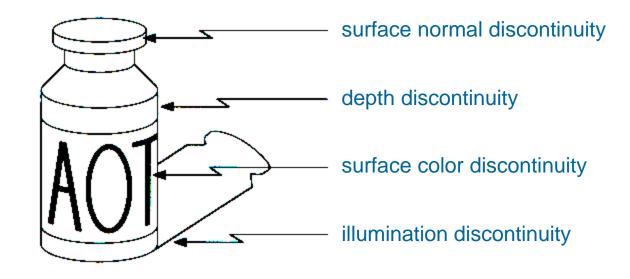
Slides from Cornelia Fermüller and Marc Pollefeys

Edge detection





- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels



Edges are caused by a variety of factors

Edge detection

- 1. Detection of short linear edge segments (edgels)
- Aggregation of edgels into extended edges
- 3. Maybe parametric description

Edge is Where Change Occurs

- Change is measured by derivative in 1D
- Biggest change, derivative has maximum magnitude
- Or 2nd derivative is zero.

Image gradient

• The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most

rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

 $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- Perpendicular to the edge
- The edge strength is given by the magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

How discrete gradient?

By finite differences

$$f(x+1,y) - f(x,y)$$

 $f(x, y+1) - f(x,y)$

The Sobel operator

- Better approximations of the derivatives exist
 - The Sobel operators below are very commonly used

1	-1	0	1
8	-2	0	2
	-1	0	1
s_x			

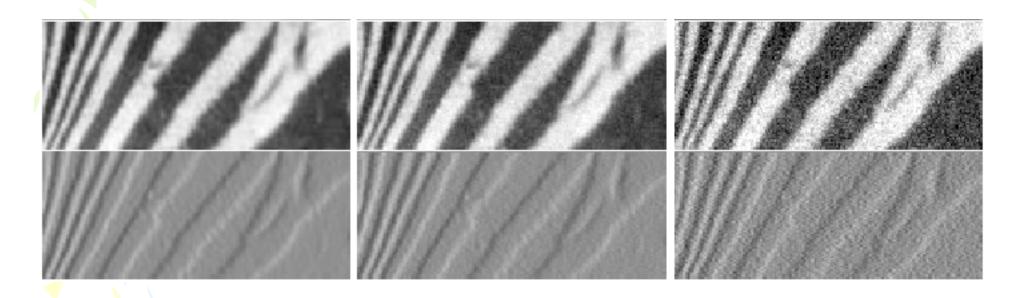
1	1	2	1
8	0	0	0
	-1	-2	-1
		s_y	

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however

Gradient operators

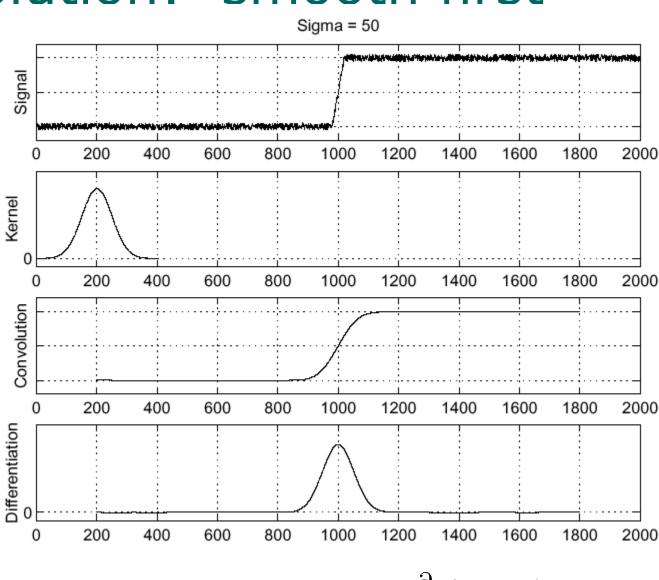
- (a): Roberts' cross operator (b): 3x3 Prewitt operator
- (c): Sobel operator (d) 4x4 Prewitt operator

Finite differences responding to noise



Increasing noise -> (this is zero mean additive gaussian noise)

Solution: smooth first



Look for peaks in

h

 $h \star f$

 $\frac{\partial}{\partial x}(h\star f)$

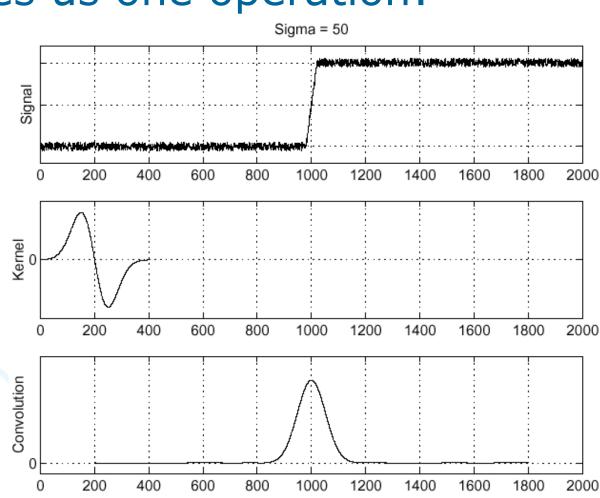
$$\frac{\partial}{\partial x}(h\star f)$$

Derivative theorem

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

$\frac{\partial}{\partial x}(h\star f)=(\frac{\partial}{\partial x}h)\star f$ This saves us one operation:

 $(\frac{\partial}{\partial x}h) \star f$



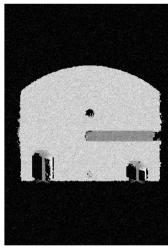
Results

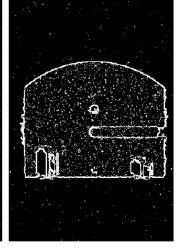
Original

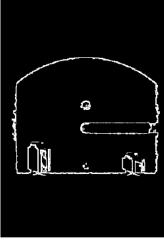
Convolution with Sobel

Thresholding (Value = 64)

Thresholding (Value = 96)



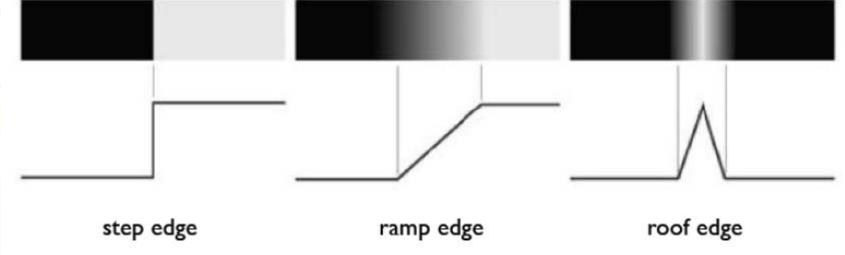




Without Gaussian

With Gaussian

Problems: Gradient Based Edges



Poor Localization (Trigger response in multiple adjacent pixels)

- Different response for different direction edges
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges
 - False negatives

Second derivative zero

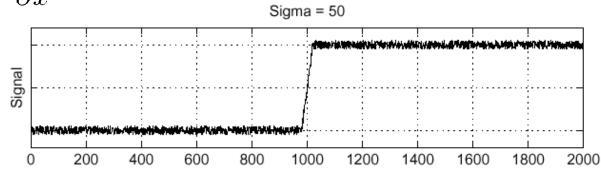
- How to find second derivative?
- f(x+1, y) 2f(x,y) + f(x-1,y)
- In 2D
- What is an edge?
 - Look for zero crossings
 - With high contrast
 - Laplacian Kernel

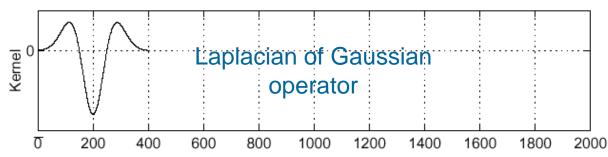
0	_1	0
	4	_1
0	1	0

_1	-1	-1
_	8	_1
<u> </u>	_1	-1

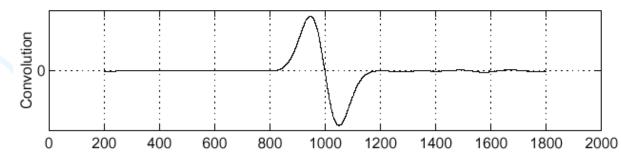
Laplacian of Gaussian Consider $\frac{\partial^2}{\partial x^2}(h\star f)$

$$\frac{\partial^2}{\partial x^2}(h \star f)$$

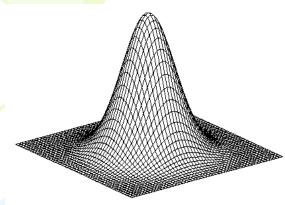


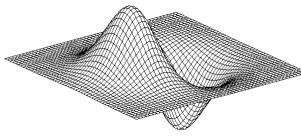


 $(\frac{\partial^2}{\partial x^2}h) \star f$



2D edge detection filters





Laplacian of Gaussian

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$
 $\frac{\partial}{\partial x} h_{\sigma}(u,v)$ $\nabla^2 h_{\sigma}(u,v)$

derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

$$\nabla^2 h_\sigma(u,v)$$

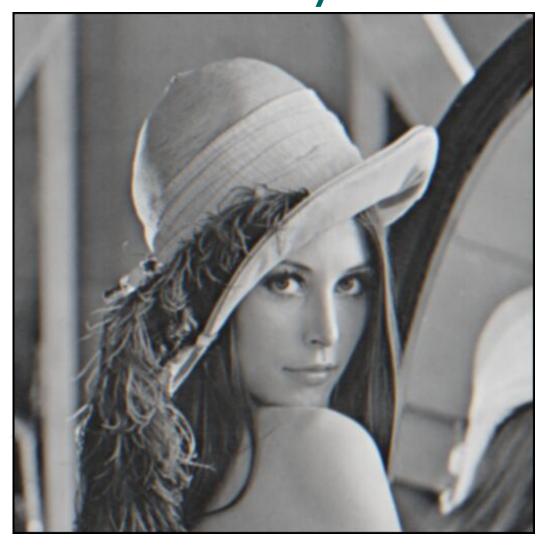
is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Edge detection by subtraction

original

Edge detection by subtraction



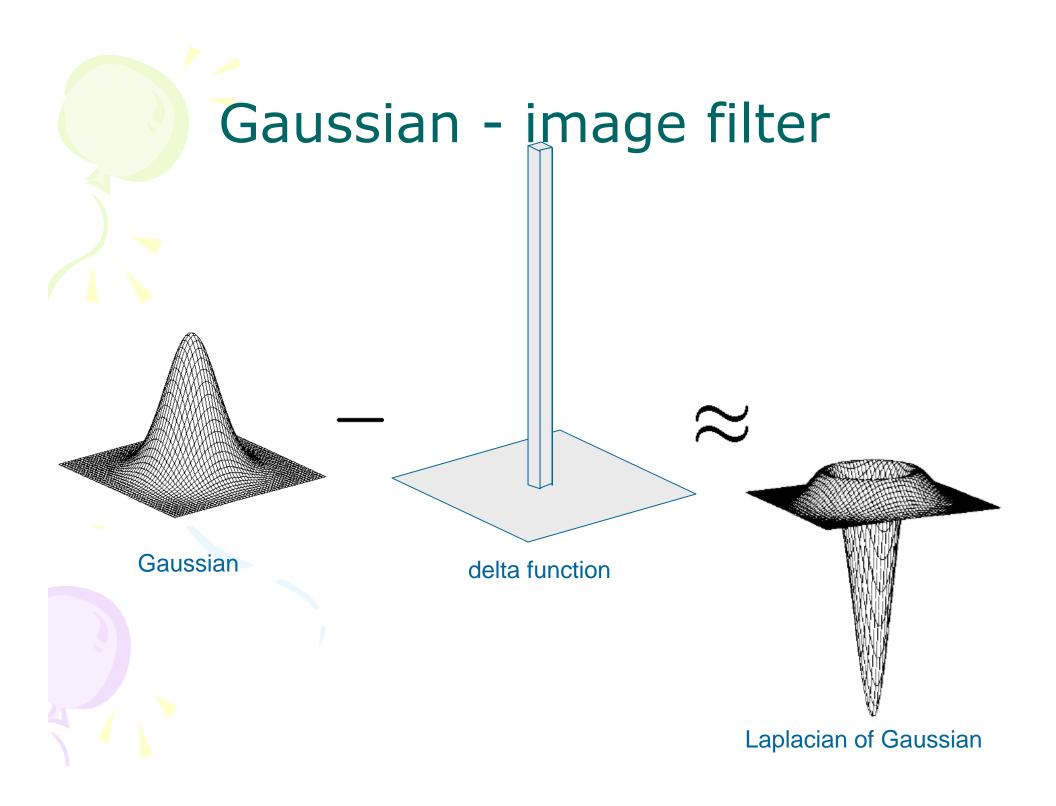
smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

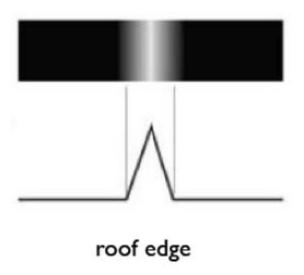
smoothed – original (scaled by 4, offset +128)

filter demo

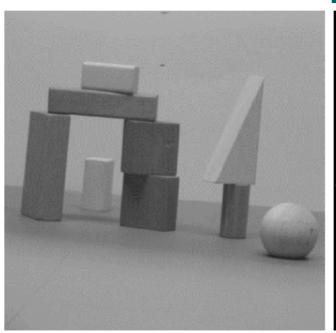


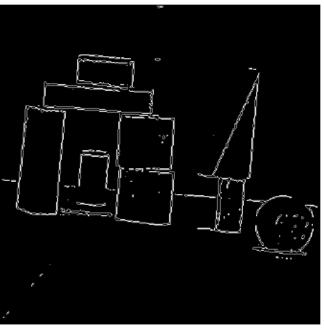
Pros and Cons

- + Good localizations due to zero crossings
- + Responds similarly to all different edge orientation
- Two zero crossings for roof edges
 - Spurious edges
 - False positives



Examples





Optimal Edge Detection: Canny

- Assume:
 - Linear filtering
 - Additive Gaussian noise
- Edge detector should have:
 - Good Detection. Filter responds to edge, not noise.
 - Good Localization: detected edge near true edge.
 - Minimal Response: one per edge
- Detection/Localization trade-off
 - More smoothing improves detection
 - And hurts localization.

Canny Edge Detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maxima Suppression
 Assures minimal response
- Use hysteresis and connectivity analysis to detect edges

Non-Maxima Supression

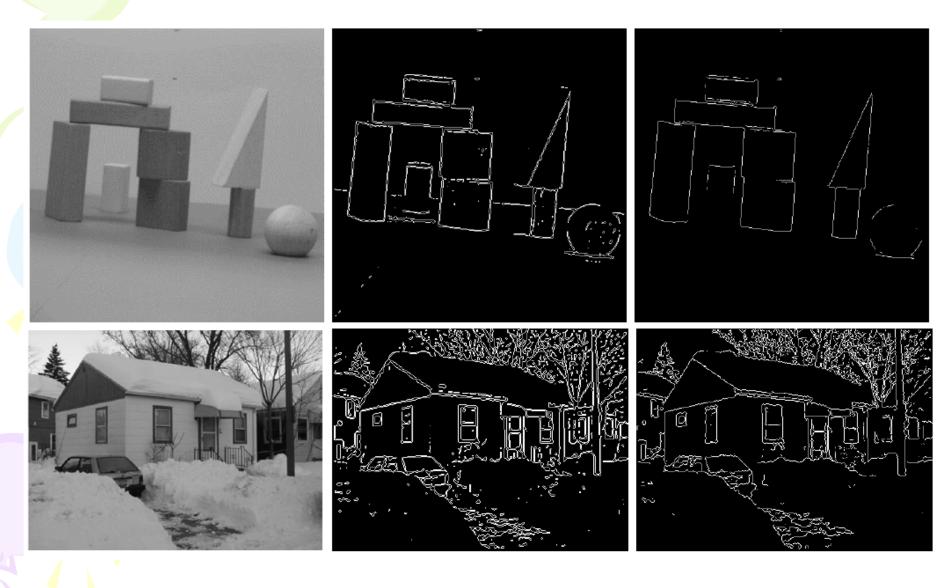
- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Only eight directions possible
 - Suppress all pixels in each direction which are not maxima
 - Do this in each marked pixel neighborhood

Hysteresis

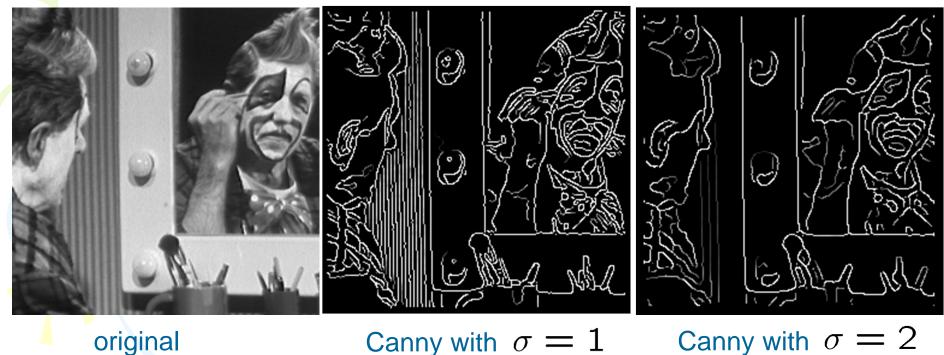
- Avoid streaking near threshold value
- Define two thresholds L , H
 - If less than L, not an edge
 - If greater than H, strong edge
 - If between L and H, weak edge
 - Analyze connectivity to mark is either nonedge or strong edge
 - Removes spurious edges

Four Steps

Comparison with Laplacian Based



Effect of Smoothing kernel size)



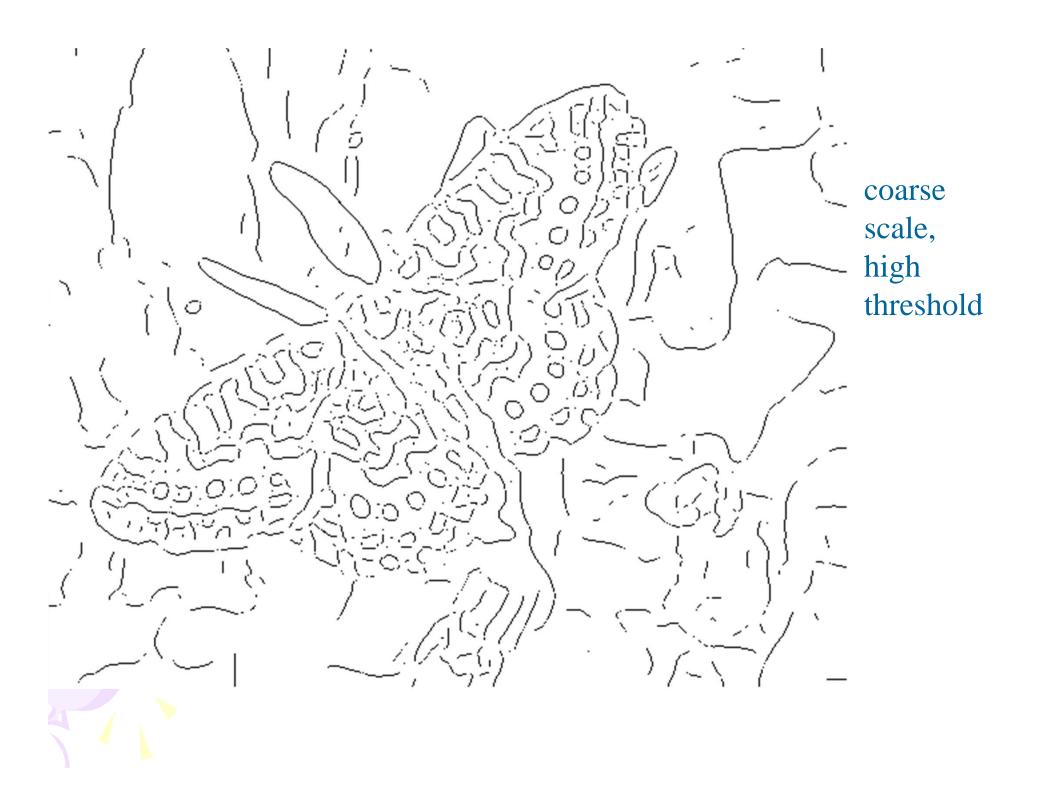
- The choice depends what is desired
 - -large σ detects large scale edges
 - -small $^{\sigma}$ detects fine features

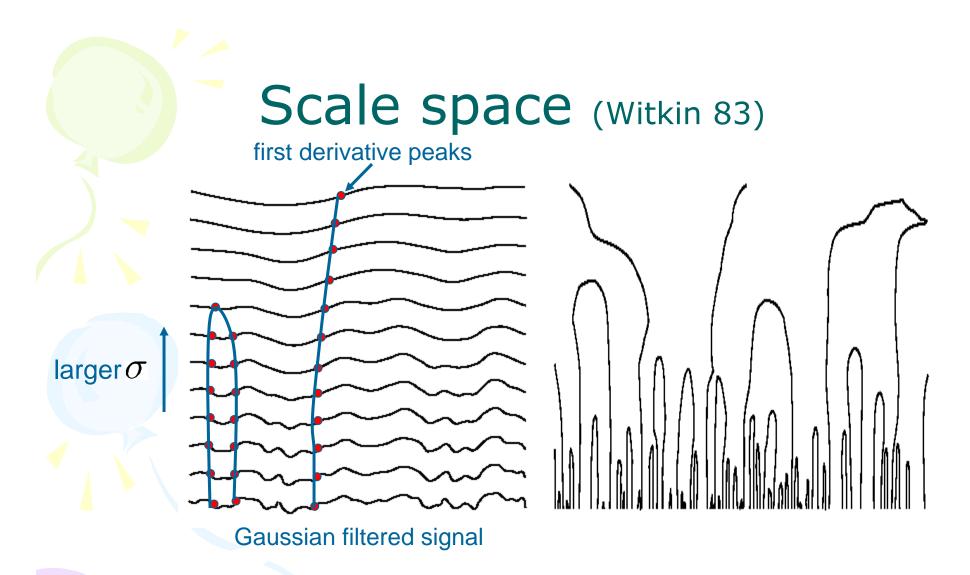
Multi-resolution Edge Detection

- Smoothing
- Eliminates noise edges.
- Makes edges smoother.
- Removes fine detail.

(Forsyth & Ponce)

fine scale high threshold



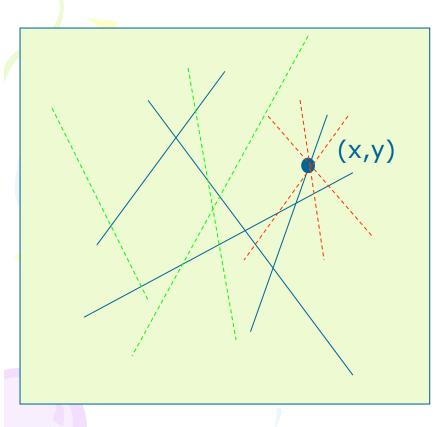


- Properties of scale space (with smoothing)
 - edge position may shift with increasing scale (σ)
 - two edges may merge with increasing scale
 - an edge may *not* split into two with increasing scale

Identifying parametric edges

- Can we identify lines?
- Can we identify curves?
- More general
 - Can we identify circles/ellipses?
- Voting scheme called Hough Transform

Hough Transform



 Only a few lines can pass through (x,y)

$$-mx+b$$

- Consider (m,b) space
- Red lines are given by a line in that space

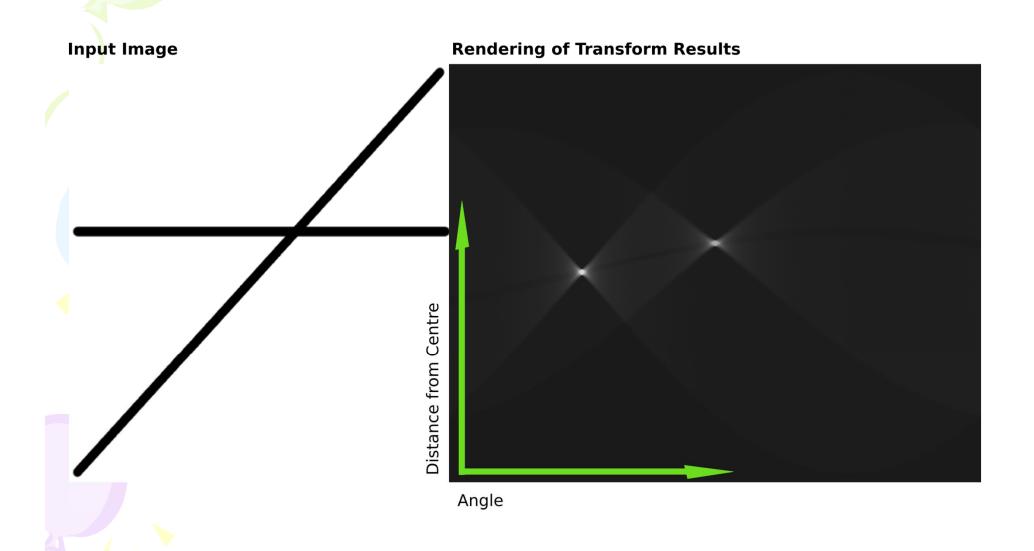
$$-b = y - mx$$

- Each point defines a line in the Hough space
- Each line defines a point (since same m,b)

How to identify lines?

- For each edge point
 - Add intensity to the corresponding line in Hough space
- Each edge point votes on the possible lines through them
- If a line exists in the image space, that point in Hough space will get many votes and hence high intensity
- Find maxima in Hough space
- Find lines by equations y mx+b

Example

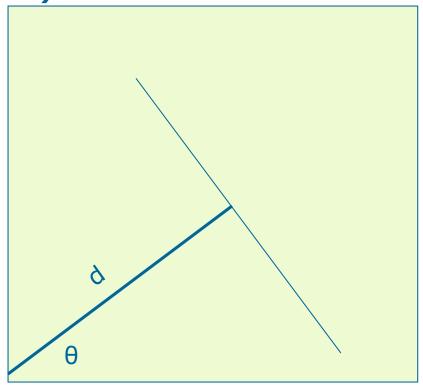


Problem with (m,b) space

Vertical lines have infinite m

• Polar notation of (d, θ)

• $d = x\cos\theta + y\sin\theta$



(0,0)

Basic Hough Transform

- 1. Initialize $H[d, \theta] = 0$
- 2. for each edge point I[x,y] in the image

for
$$\theta = 0$$
 to 180
 $d = x\cos\theta + y\sin\theta$
 $H[d, \theta] += 1$

3. Find the value(s) of (d, θ) for max H[d, θ]

A similar procedure can be used for identifying circles, squares, or other shape with appropriate change in Hough parameterization.