The Video Data Type
Coding & Compression Basics

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
September 7, 1999

http://www.cs.unc.edu/~jeffay/courses/comp249f99

The Video Data Type
Outline

◆ What is video?
 » Video components
 » Representations of video signals
 » Color spaces

◆ Digital Video
 » Coding

◆ Compression basics
 » Simple compression
 » Interpolation-based techniques
 » Predictive techniques
 » Transforms
 » Statistical techniques
Video Basics
The components of video

- Video deals with *absorbed* and *projected* light
 - Cameras absorb light and monitors project light

- The primary colors in this domain are:
 - red, green, and blue

Video Basics
The components of video transmission

- Video is a multi-dimensional signal

\[
\begin{align*}
\text{R-component} & \quad \text{G-component} & \quad \text{B-component} \\
\begin{array}{c}
\text{x - axis} \\
\text{y - axis} \\
\text{time}
\end{array}
\end{align*}
\]
Video Basics

Video as a 1-dimensional signal

- Representation of a 2-dimensional image

- Representation of motion (3-dimensional images)

Frame \(i\)

Frame \(i+1\)

33 ms NTSC (30 fps)

40 ms PAL (25 fps)

Video Basics

Resolution

- Television broadcast standards
 - NTSC — 525 lines
 - PAL — 625 lines

- Computer graphics standards
 - VGA — 640x480
 - SVGA — 1024x768

- Multimedia standards
 - CIF — 352x288
 - QCIF — 176x144

- Digital video standards
 - CCIR 601 — 720x480
 - HDTV — 1440x1152

Image sizes
(in picture elements)
Video Basics

Color spaces

- **RGB** is not widely used for transmitting a signal between capture and display devices
 - It’s difficult to manage 3 separate inputs & outputs (and requires too much bandwidth)

- **Composite formats are used instead**
 - Luminance ("Y") — the brightness of the monochrome signal
 - Chrominance — the coloring information
 - Chrominance is typically represented by two “color difference” signals:
 - “U” and “V” ("hue and tint") or
 - “I” and “Q” ("saturation" and “color”)

Video Basics

Color spaces

- **NTSC video**
 - \(Y = 0.30R + 0.59G + 0.11B \)
 - \(I = 0.60R - 0.28G - 0.32B \)
 - \(Q = 0.21R - 0.52G + 0.31B \)

- **PAL video/Digital recorders**
 - \(Y = 0.3R + 0.6G + 0.1B \)
 - \(U = (B - Y) \times 0.493 \)
 - \(V = (R - Y) \times 0.877 \)
Video Basics

Digital video

- Sample an analog representation of video (RGB or YUV) & quantize
 - Two dimensions of video are already discretized
 - Sample in the horizontal direction according to the resolution of the media

- 8-bits per component per sample is common
 - 24 bits per picture element (pixel)

- Storage/transmission requirements
 - NTSC — 440 x 480 x 30 x 24 = 152x10^6 bits/sec
 (19 MB/s or 24 bits/pixel (bpp))

The Video Data Type

Outline

- What is video?
 - Video components
 - Representations of video signals
 - Color spaces

- Digital Video
 - Coding

- Compression basics
 - Simple compression
 - Interpolation-based techniques
 - Predictive techniques
 - Transforms
 - Statistical techniques
Do we really need every “bit” of a video stream?
» Not if redundancy exists
» Not if we can’t perceive the effect of eliminating the bit

Eliminating redundancy
» Spatial redundancy
» Temporal redundancy

Eliminating imperceptible detail
» Coding
» Domain transformation

Digital Video
Compression Techniques

Adapted from Buford p.147
Video Compression

Issues

◆ Bandwidth requirements of resulting stream
 » Bits per pixel (bpp)
◆ Image quality
◆ Compression/decompression speed
 » Latency
 » Cost
 » Symmetry
◆ Robustness
 » Tolerance of errors and loss
◆ Application requirements
 » Live video
 » Stored video

Simple Image Compression

Truncation

◆ Reducing the number of bits per pixel
 » Throw away the least significant bits of each sample value

◆ Example
 » Go from RGB at 8 bits/component sample (8:8:8) to 5 bits (5:5:5)
 ❖ Go from 24 bpp to 15 bpp
 ❖ This gives “acceptable results”
 » Go from YUV at 8 bits/component sample 6:5:5 (16 bpp)

◆ Advantage — simple!
Simple Compression Schemes

Color-table lookup (CLUT)

- Quantize coarser in the color domain
 - Pixel values represent indices into a color table
 - Tables can be optimized for individual images

- Entries in color table stored at “full resolution” (e.g., 24 bits)

- Example:
 - 8-bit indices (256 colors) gives
 \[(440 \times 480) \times 8 + (24 \times 256) = 1.7 \times 10^6 \text{ bits/sec}\]

Simple Compression Schemes

Run-length encoding

- Replace sequences of pixel components with identical values with a pair \((value, count)\)

- Works well for computer-generated images, cartoons. works less well for natural video

- Also works well with CLUT encoded images

 \((i.e., \text{multiple techniques may be effectively combined})\)
Interpolative Compression Schemes

Color sub-sampling

- Do not acquire chrominance component values at all sampling points
 - Humans have poor acuity for color changes
 - UV and IQ components were defined with this in mind

- Example: Color representation in digital tape recorders
 - Subsampling by a factor of 4 horizontally is performed

\[
\begin{align*}
\text{Y component} & \quad \text{U component} & \quad \text{V component} \\
\end{align*}
\]

Interpolative Compression Schemes

Color sub-sampling

- Subsampling by a factor of 4 horizontally & vertically

\[
\begin{align*}
\text{Y component} & \quad \text{U component} & \quad \text{V component} \\
\end{align*}
\]

- Interpolating between samples provides “excellent” results
 - Chrominance still sampled at 8 bpp
Interpolative Compression Schemes
Color sub-sampling

- Intermediate pixels either take on the value of nearest sampling point or their value is computed by interpolation

- Bi-linear interpolation:

\[
U(1, 1) = U(0,0) \times 0.75 + U(1,0) \times 0.25 + U(0,1) \times 0.75 + U(1,1) \times 0.25
\]

Sub-sampled \(U \) or \(V \) component

Interpolative Compression Schemes
Color sub-sampling

- Storage/transmission requirements reduction:
 - Within a 4x4 pixel block:
 \[
 \text{bpp} = \frac{(8 \text{ bpp luminance}) \times 16 \text{ samples} + (8 \text{ bpp chrominance}) \times 2}{16}
 = 9
 \]
 - A 62.5% reduction overall
Predictive Compression Schemes
Exploiting spatial & temporal redundancy

- Adjacent pixels are frequently similar
 - Do pixel-by-pixel DPCM compression
 - Leads to smearing of high-contrast edges
 - ADPCM — a little better, a little worse
 - Introduces “edge quantization” noise

- Motion Estimation — If the future is the similar to the past, encode only the difference between frames
 - This assumes we can store a previous frame to compare with a future one

Transform-Based Compression
Exploiting redundancy in other domains

- A simple linear transformation
 - 2 x 2 array of pixels
 - A B
 - C D
 - 1-D array of differences
 - A B–A C–A D–A
 - Encode differences with less precision

- Storage savings
 - Original array: 4 pixels x 8 bpp = 32 bits
 - Transformed array: 8 bits + (3 pixels x 4 bpp) = 20 bits
A transformation into the frequency domain

Example: 8 adjacent pixel values (e.g., luminance)

What is the most compact way to represent this signal?

Transform-Based Compression
The Discrete Cosine Transform (DCT)

Represent the signal in terms of a set of cosine basis functions
The basis functions derive from sampling cosine functions of increasing frequency
» From 0-3.5 Hz
» Basis functions sampled at 8 discrete points

The Discrete Cosine Transform
Represent input as a sum of scaled basis functions
Transform-Based Compression
The Discrete Cosine Transform (DCT)

- The 1-dimensional transform:

\[
F(\mu) = \frac{C(\mu)}{2} \sum_{x=1}^{7} f(x) \cos \left(\frac{(2x+1)\mu\pi}{16}\right)
\]

- \(F(\mu) \) is the DCT coefficient for \(\mu = 0..7 \)
- \(f(x) \) is the \(x \)th input sample for \(x = 0..7 \)
- \(C(\mu) \) is a constant (equal to \(2^{-0.5} \) if \(\mu = 0 \) and 1 otherwise)

- The 2-dimensional (spatial) transform:

\[
F(\mu,\nu) = \frac{C(\mu)C(\nu)}{2} \sum_{x=1}^{7} \sum_{y=1}^{7} f(x,y) \cos \left(\frac{(2x+1)\mu\pi}{16}\right) \cos \left(\frac{(2y+1)\nu\pi}{16}\right)
\]

Transform-Based Compression
The Discrete Cosine Transform (DCT)

- DCT coefficients encode the spatial frequency of the input signal
 - DC coefficient — zero spatial frequency (the “average” sample value)
 - AC coefficients — higher spatial frequencies

- Claim: Higher frequency coefficients will be zero and can be ignored
Transform-Based Compression

The two-dimensional DCT

- Apply the DCT in \(x \) and \(y \) dimensions simultaneously to 8x8 pixel blocks
 - Code coefficients individually with fewer bits

<table>
<thead>
<tr>
<th></th>
<th>172</th>
<th>-18</th>
<th>15</th>
<th>-8</th>
<th>23</th>
<th>-9</th>
<th>-14</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>-34</td>
<td>24</td>
<td>-8</td>
<td>-10</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td>-8</td>
<td>-4</td>
<td>6</td>
<td>-5</td>
<td>4</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>6</td>
<td>-5</td>
<td>4</td>
<td>-4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>-2</td>
<td>-3</td>
<td>5</td>
<td>-3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
<td>-4</td>
<td>6</td>
<td>-4</td>
<td>4</td>
<td>2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-8</td>
<td>-4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Video Frame

DCT Coefficients

Statistical Compression

Huffman coding

- Exploit the fact that not all sample values are equally likely
 - Samples values are non-uniformly distributed
 - Encode “common” values with fewer bits and less common values with more bits

- Process each image to determine the statistical distribution of sample values
 - Generate a codebook — a table used by the decoder to interpret variable length codes
 - Codebook becomes part of the compressed image
Order all possible sample values in a binary tree by combining the least likely samples into a sub-tree.

Label the branches of the tree with 1’s and 0’s.

» Huffman code is the sequence of 1’s and 0’s on the path from the root to the leaf node for the symbol.
Video Compression Standards

Kevin Jeffay
Department of Computer Science
University of North Carolina at Chapel Hill
jeffay@cs.unc.edu
September 14, 1999

http://www.cs.unc.edu/~jeffay/courses/comp249f99

The Video Data Type
Compression Standards

- Basic compression techniques
 - Truncation, CLUT, run-length coding
 - sub-sampling & interpolation
 - DPCM
 - DCT
 - Huffman coding

- Common algorithms
 - JPEG/MJPEG
 - H.261/H.263
 - MPEG-1-2
Compression Algorithms

JPEG

- A still image ("continuous tone") compression standard
 » DCT-based

- 4 Modes of compression
 » sequential — image components coded in order scanned
 ♦ Baseline — "default compression"
 » progressive — image coded in multiple passes so partial images can be displayed during decoding
 » lossless — guaranteed no loss
 » hierarchical — image encoded at multiple resolutions

- Typical results
 » 24:1 compression (1 bpp)

JPEG Compression
Encoder architecture — sequential mode

- Inputs are 8 or 12-bit samples
 » baseline = 8-bit samples
- Image components are compressed separately
 » DCT operates on 8x8 pixel blocks

Digitized still image (or video frame)
JPEG Compression
Quantization

- DCT coefficient quantization is the key to compression
 » Quantize according to the visual important of each coefficient
- The application specifies a quantization table
 » A table of step-sizes from 1-255
 » Default tables specified for the baseline coder

Step-size table can be scaled to control degree of compression
 » Scaling factor called the “q-factor”
JPEG Compression
Coding coefficients

- DC coefficients difference-coded
 - DC coefficients from adjacent 8x8 blocks strongly correlated

- AC coefficients run-length and Huffman coded

JPEG Compression
Coding DC coefficients

- DC coefficients DPCM coded and recoded using a variable length entropy (Huffman) code
JPEG Compression
Coding AC coefficients

◆ “Zig-zag” order the AC coefficients to increase effectiveness of run-length coding
 » DC,
 \(AC_{01}, AC_{10}, \)
 \(AC_{02}, AC_{11}, AC_{20}, \)
 \(AC_{03}, AC_{12}, AC_{21}, AC_{30}, \)
 ...

◆ Run-length code the stream
 » Each non-zero coefficient encoded as a pair:
 \((\text{run-length of preceding zero coefficients}, \text{ amplitude of non-zero coefficient})\)

JPEG Compression
Coding AC coefficients

◆ Each coefficient encoded as a variable length “pair”
 » \([\text{run length}, \text{ size}], \text{ amplitude}\)"

◆ First element coded using a variable-length Huffman code
 » A coding table (“code book”) must be provided
 ❖ Can be generated on-the-fly with an additional pass over the coefficients
 ❖ Up to four code books per image may be specified
 ❖ The codebook becomes part of the coded bit-stream

◆ Second element coded as a variable length integer
 » whose length is specified in the previous “symbol”
Sequential JPEG Compression Summary

Complete compression pipeline

Compression comes from:
» Chrominance subsampling
» DCT coefficient quantization
» Difference coding DC coefficients
» Statistical & run-length coding of AC coefficients

Qualitative results:
» 0.25 - 0.5 bpp — ok for some applications
» 0.5 - 0.75 bpp — ok for many
» 0.75 - 1.5 bpp — excellent
» 1.5 - 2.0 — indistinguishable

JPEG Compression
Examples of quality v. bpp
JPEG Compression
Examples of quality v. bpp

4.4 bpp

0.7 bpp

0.7 bpp

0.5 bpp
JPEG Compression
Other modes of operation

- **Lossy compression modes**
 - *sequential* — image components coded in order scanned
 - Default mode
 - *progressive* — image coded in multiple passes so partial images can be displayed during decoding
 - Useful for transmission of images over slow communications links
 - *hierarchical* — image encoded at multiple resolutions
 - Useful for images that will be displayed on heterogeneous displays

- **Lossless mode**
 - Guaranteed lossless
 - Uses DPCM encoding rather than DCT

JPEG Compression Modes
Loseless mode operation

- Uses prediction instead of the DCT
 - Each pixel’s value is expressed as a function of neighboring pixels
 - A code word identifies the predictor being used
JPEG Compression Modes

Loseless mode operation

- Predicted samples are DPCM encoded
- Differences are entropy coded as before
- Achieves approximately 2:1 compression

JPEG Compression Modes

Progressive mode operation

- Encode the image in scans to enable the display of a series of progressively refined images
 - Requires an image-sized coefficient buffer between quantizer & entropy coder
 - Scans of image components are also interleaved in bit-stream
JPEG Compression Modes

Progressive mode operation

- Scan the coefficient buffer in multiple passes
 - Transmit portions of each coefficient

Sequential Encoding

“Successive approximation”

JPEG Compression Modes

Progressive mode operation

- Scan the coefficient buffer in multiple passes
 - Transmit portions of each coefficient

Sequential Encoding

“Spectral selection”
JPEG Compression Mode
Hierarchical mode operation

- Encode the image at multiple resolutions
 » Each image differs from the previous by a factor of 2 in either the vertical or horizontal dimension
 » Images created by filtering and subsampling

- Each resolution encoded by either the sequential or progressive algorithm

JPEG Compression Mode
Hierarchical mode operation

- Start with the lowest desired resolution & iteratively encode until the full image resolution has been coded
 » Each iteration encodes an image with a factor of 2 higher resolution in one dimension
Motion JPEG
Applying JPEG to moving images

- Video can be (trivially) encoded as a sequence of stills
 - This practice is routine in the digital video editing world

- The issue is how to encode and transmit “side information”
 - Quantization tables, Huffman code-book may/may not change between frames

The Video Data Type
Compression Standards

- Basic compression techniques
 - Truncation, CLUT, run-length coding
 - Sub-sampling & interpolation
 - DPCM
 - DCT
 - Huffman coding

- Common algorithms
 - JPEG/MJPEG
 - H.261/H.263
 - MPEG-1,-2
Compression Algorithms

H.261 \((p \times 64) \)

- A telecommunications (ITU) standard for audio & video transmission over digital phone lines (ISDN)

- H.261 primarily intended for interactive video applications
 - Design of the standard driven by a 150 ms maximum encoding/decoding delay goal

- A scalable coding architecture capable of generating bit streams from 64 kbps (“1x64”) to 1,920 kbps (“30x64”) in 64 kbps increments
 - \(p = 1, 2 \) produces a low res “videophone” (Common use is for ISDN BRI — 112 kbps video, 16 kbps audio)
 - \(p \geq 6 \) produces an acceptable videoconference and allows multipoint communication

H.261
Video formats

- **Inputs**
 - 525 or 625 line composite video
 - 8 bits/sample
 - 30 frames/second

- **Color space**
 - \(Y, Cr, Cb \)

- **Outputs**
 - CIF or QCIF
 - 30, 15, 10, or 7.5 frames/second
H.261
Video frame representation

- Chrominance components are subsampled 2:1 horizontally & vertically
- Each video frame is subdivided into 16x16 *macroblocks*

![Diagram showing Y component: 4 8x8 blocks and Cr component: 1 8x8 block (same for Cb)]

H.261
Video compression pipeline

- Two compression modes, selectable on a frame-by-frame basis
 - **INTRA-frame mode** — DCT-based compression *á la* JPEG
 - video is treated as a sequence of stills
 - **INTER-frame mode** — Incorporates motion estimation & DPCM prediction
 - temporal redundancy is eliminated to further improve compression

![Diagram showing compression pipeline with INTRA-frame and INTER-frame pipelines]
H.261 Video Compression

INTRA-frame mode

- Compression is similar to JPEG
 - DCT encoding
 - linear quantization
 - entropy coding

- Quantization is uniform across all AC coefficients
 - But is adaptive and driven by the space remaining in a transmission buffer

H.261 INTER-Frame Mode

Motion estimation & prediction

- Motion estimation is performed only on luminance macroblocks
 - Compare a luminance macroblock with its neighbors in the previous frame
 - If the difference is small, do not compress the block, only record location of matching block
 - If the difference is “large” send the difference between this macroblock and a previous neighboring macroblock into the DCT compression pipeline
Finding a predictor is the process of finding the minimally different adjacent 16x16 block in the previous frame.

Construct a “motion vector” — a relative displacement w for block b that minimizes the mean absolute distortion (MAD):

$$\frac{1}{256} \sum_{i=0}^{15} \sum_{j=0}^{15} |frame_n[16b_x+i, 16b_y+j] - frame_{n-1}[(16b_x+w_x)+i, (16b_y+w_y)+j]|$$
H.261 INTER-frame Mode

Complete pipeline

H.261

Video frame representation

- Macroblocks combined into *groups of blocks* (GOBs)
 - An 11 by 3 array of macroblocks

<table>
<thead>
<tr>
<th>CIF Image: 12 GOBs</th>
<th>QCIF Image: 3 GOBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 GOBs</td>
<td>3 GOBs</td>
</tr>
<tr>
<td>176 pixels</td>
<td>176 pixels</td>
</tr>
<tr>
<td>352 pixels</td>
<td>144 pixels</td>
</tr>
<tr>
<td>288 pixels</td>
<td>144 pixels</td>
</tr>
<tr>
<td>48 pixels</td>
<td>48 pixels</td>
</tr>
<tr>
<td>5 pixels</td>
<td>5 pixels</td>
</tr>
</tbody>
</table>

= video frame buffer
= 16x16 pixel block
= 8x8 pixel block
= control data
H.261 Data Transmission

Bit-stream format

- Picture data is hierarchically transmitted

<table>
<thead>
<tr>
<th>Picture Layer</th>
<th>GOB1 data</th>
<th>GOB12 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group of Blocks Layer</td>
<td>GOB header</td>
<td>MB1 data</td>
</tr>
<tr>
<td>Macroblock Layer</td>
<td>MB header</td>
<td>block1 data</td>
</tr>
<tr>
<td>Block Layer</td>
<td>DCT coeff</td>
<td>...</td>
</tr>
</tbody>
</table>

ITU H.320 Teleconferencing Standards

Teleconferencing over ISDN

- H.261 — Video communications at \(p \times 64 \) kbps
- H.221 — Syntax for multiplexing audio and video packets
- H.230 — Protocol for call setup and negotiation of end-system (“terminal”) capabilities
- H.242 — Conference control protocol
- G.711 — ISDN audio coding standard at 64 kbps
- G.722 — High-quality audio at 64 kbps
- G.728 — Reduced quality speech at 16 kbps
H.263 Video Compression
Low-bitrate video compression for data networks

- Based on H.261 (& MPEG-1, -2)
- Includes new image formats:

<table>
<thead>
<tr>
<th>Format</th>
<th>Image Size</th>
<th>Maximum Number of coded bits/picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub-QCIF</td>
<td>128 x 96</td>
<td>64</td>
</tr>
<tr>
<td>QCIF</td>
<td>176 x 144</td>
<td>64</td>
</tr>
<tr>
<td>CIF</td>
<td>352 x 288</td>
<td>256</td>
</tr>
<tr>
<td>4CIF</td>
<td>704 x 576</td>
<td>512</td>
</tr>
<tr>
<td>16CIF</td>
<td>1,408 x 1,152</td>
<td>1024</td>
</tr>
</tbody>
</table>

- Added coding efficiency from:
 » Unrestricted motion vectors
 » Bi-directional motion estimation/prediction
 » Arithmetic coding of AC coefficients

H.263 Video Compression
Companion standards

- H.263 — “Low bit-rate” video coding
- H.324 — Terminal systems
- H.245 — Conference control
- H.223 — Audio/video multiplexing
- G.723 — Audio coding 5.3 and 6.3 kbps

- For Internet conferencing there is also the related T.120 Document Conferencing standards family
The Video Data Type
Compression Standards

- Basic compression techniques
 - Truncation, CLUT, run-length coding
 - sub-sampling & interpolation
 - DPCM
 - DCT
 - Huffman coding

- Common algorithms
 - JPEG/MJPEG
 - H.261/H.263
 - MPEG-1,-2

Compression Algorithms
MPEG

- A family of audio/video coding schemes
 - MPEG-1 — A video coding standard for digital storage/retrieval devices
 - “VHS quality” video coded at approximately 1.5 Mbps
 - MPEG-2 — Video coding for digital television
 - SIF/CIF to HDTV resolutions at data rates up to 100 Mbps
 - MPEG-4 — Coding of audio/visual “objects” for multimedia applications
 - Coding of natural & synthetic images
 - Object-based encoding for content access & manipulation
 - MPEG-7 — A content/meta-data representation standard for content search and retrieval
MPEG-1 Video Compression

Requirements

- MPEG intended primarily for stored video applications
 - A “generic” standard
 - But a basic assumption is that video will be coded once and played multiple times

- Support for VCR-like operations
 - Fast forward/forward scan
 - Rewind/reverse scan
 - Direct random access
 - ...

MPEG-1 Video Compression

Relation to H.261

- Similar to H.261...
 - INTER and INTRA picture types, entropy encoded, motion compensated, DCT-based compression...

- … but with more aggressive motion compensation:
 - prediction — approximately the same as in H.261
 - interpolation (bi-directional prediction)
 - DPCM encoding of motion vectors
MPEG-1 Video Compression

Relation to JPEG

- Non-uniform quantization for intra-coded pictures
 » Uniform quantization for inter-coded pictures

The predictor search space is not specified in the standard
» Implementations can perform as exhaustive a search as they desire

Find the motion vector \(w \) that minimizes some cost function \(f \):

\[
\sum_{i=0}^{15} \sum_{j=0}^{15} f(frame_n[16b_x+i, 16b_y+j] - frame_{n-1}[16b_x+w_x+i, 16b_x+w_y+j])
\]
Besides simple prediction, *interpolation* (bi-directional prediction) is used to achieve further compression.

A future frame *and* a past frame are used to predict the current frame:
- Deals effectively with scene changes and new object appearances
- Produces predictors (pairs) with better statistical properties

MPEG defines three picture (frame) types:
- **I** — intracoded pictures coded as a still image
- **P** — predicted pictures predicted from the previous I or P picture
- **B** — interpolated pictures predicted from the previous I or P picture and the next I or P picture
MPEG Motion Compensated Prediction

Bi-directional prediction

- Directional prediction implies that frames cannot be encoded or transmitted in the order they are scanned

- Encoding & transmission order:
 » I1 P5 B2 B3 B4 I9 B6 B7 B8 P13 B10 B11 B12 I17 B14 B15 B16 ...

MPEG Motion Compensated Prediction

Bi-directional prediction

- Bi-directional prediction modes are selectable on a macroblock by macroblock basis within a B picture

- Macroblocks can be predicted by:
 » themselves: \(frame'_n[i, j] = frame_n[i, j] \)
 » a previous frame: \(frame'_n[i, j] = frame_{n-y}[i+w_x, j+w_y] \)
 » a future frame: \(frame'_n[i, j] = frame_{n+x}[i+w_x, j+w_y] \)
 » a previous & future frame:
 \[
 frame'_n[i, j] = (frame_{n-y}[i+w_x, j+w_y] + frame_{n+x}[i+w'_x, j+w'_y])/2
 \]
Bi-Directional Motion Compensation

Compression rates

- Some prototypical results for 2 movies encoded at 320x240, 30 fps and constant quality

“Crocodile Dundee”

“ET”

MPEG Video Compression

Decoder architecture

- u

- "Crocodile Dundee"

- "ET"

- "Stream Demultiplexor"

- "Inverse Quantizer"

- "DCT Decoder"

- "Macroblock Buffer"

- "Entropy Decoder"

- "DPCM Decoder"

- "Prediction Control"

- = video frame

- = 16x16 pixel block

- = 8x8 pixel block

- = control data
MPEG Video Compression

Coded bit-stream

- MPEG has a layered bit-stream similar to H.261
- There are seven layers:
 - **Sequence Layer**
 - decoding parameters (bit-rate, buffer size, picture resolution, frame rate, ...)
 - **Group of Pictures Layer**
 - a random access point
 - **Picture Layer**
 - picture type and reference picture information
 - **Slice Layer**
 - position and state information for decoder resynchronization
 - **Macroblock Layer**
 - coded motion vectors
 - **Block Layer**
 - coded DCT coefficients, quantizer step size, etc.

MPEG-2
“New & Improved” MPEG-1

- A coding standard for the broadcast industry
 - Coding for video that originates from cameras
 - Offers little benefit for material originally recorded on film
- But included is support for:
 - Higher (chrominance) sampling rates
 - Resilience to transmission errors
 - ...
- More mature and powerful coding/compression technology is used
 - Unrestricted motion search with 1/2 pel resolution for motion vectors