
Image Processing and Representations

Prepared by Behzad Sajadi

Borrowed from Frédo Durand’s 
Lectures at MIT 



Image processing

• Filtering, Convolution, and our friend 
Joseph Fourier



What is an image?
• We can think of an image as a function, f,
• from R2 to R:

– f( x, y ) gives the intensity at position ( x, y ) 
– Realistically, we expect the image only to be 

defined over a rectangle, with a finite range:
• f: [a,b]x[c,d] [0,1]

• A color image is just three functions pasted 
together.  We can write this as a “vector-
valued” function: ( , )
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Images as functions
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Image Processing

• image filtering: change range of image
• g(x) = h(f(x))f
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• image warping: change domain of image
• g(x) = f(h(x))



Image Processing

• image filtering: change range of image
• g(x) = h(f(x))

h

h

• image warping: change domain of image
• g(x) = f(h(x))



Point Processing

• The simplest kind of range transformations 
are those independent of position x,y:

• g = t(f)
• This is called point processing.

• Important: every pixel for himself – spatial 
information completely lost!



Negative



Contrast Stretching



Image Histograms

Cumulative Histograms

s = T(r)



Histogram Equalization



Questions?



Filtering

• So far we have looked at range-only and 
domain-only transformation

• But other transforms need to change the 
range according to the spatial 
neighborhood
– Linear filtering in particular



Linear filtering

• Replace each pixel by a linear 
combination of its neighbors.

• The prescription for the linear 
combination is called the “convolution 
kernel”.
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More formally: Convolution
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Linear filtering
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Linear filtering
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Blurring
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Blur examples
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Blur examples
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Questions?



Linear filtering (warm-up slide)
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Linear filtering (no change)
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Linear filtering
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(remember blurring)
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Sharpening 
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Sharpening example
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Sharpening

before after



Questions?



Studying convolutions

• Convolution is complicated
– But at least it’s linear

(f+kg)- h = f-h +kg
• We want to find a better expression

– Let’s study function whose behavior is simple 
under convolution



Blurring: convolution

Input Kernel
Convolution

sign

Same shape, just reduced contrast!!!

This is an eigenvector 
(output is the input multiplied by a constant)



Big Motivation for Fourier analysis

• Sine waves are eigenvectors of the 
convolution operator



Other motivation for Fourier 
analysis: sampling

• The sampling grid is a periodic structure
– Fourier is pretty good at handling that
– A sine wave can have serious problems with sampling

• Sampling is a linear process



Sampling Density

• If we’re lucky, sampling density is enough

Input Reconstructed



Sampling Density

• If we insufficiently sample the signal, it may be 
mistaken for something simpler during 
reconstruction (that's aliasing!)



Motivation for sine waves

• Blurring sine waves is simple
– You get the same sine wave, just scaled down
– The sine functions are the eigenvectors of the 

convolution operator
• Sampling sine waves is interesting

– Get another sine wave
– Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of 
sine waves, convolution and sampling are easy 
to study



Questions?



Fourier as a change of basis

• Discrete Fourier Transform: just a big 
matrix

• But a smart matrix!

http://www.reindeergraphics.com



To get some sense of what 
basis elements look like, we 
plot a basis element --- or 
rather, its real part ---
as a function of x,y for some 
fixed u, v. We get a function 
that is constant when (ux+vy) 
is constant. The magnitude of 
the vector (u, v) gives a 
frequency, and its direction 
gives an orientation. The 
function is a sinusoid with 
this frequency along the 
direction, and constant 
perpendicular to the 
direction. 
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Here u and v 
are larger than 
in the previous 
slide.
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And larger still...
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Motivations

• Computation bases
– E.g. fast filtering

• Sampling rate and filtering bandwidth
• Optics: wave nature of light & diffraction 
• Insights



Questions?



Fourier Series

• Consider the family of complex exponentials

• Properties
– Periodic with period
– Orthogonal on any interval

• Hence, we can write a periodic signal x(t) with 
period T as
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The Fourier Transform

• Defined for infinite, aperiodic signals
• Derived from the Fourier series by “extending the period 

of the signal to infinity”
• The Fourier transform is defined as

• X(ω) is called the spectrum of x(t)
• It contains the magnitude and phase of each complex 

exponential of frequency ω in x(t) 
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The Fourier Transform

• The inverse Fourier transform is defined as

• Fourier transform pair

• x(t) is called the spatial domain representation
• X(ω) is called the frequency domain

representation
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Duality



Beware of differences

• Different definitions of Fourier transform
• We use

• Other people might exclude normalization 
or include 2π in the frequency

• X might take ω or jω as argument
• Physicist use j, mathematicians use i
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Questions?



Phase
• Don’t forget the phase! Fourier transform results 

in complex numbers

• Can be seen as sum of sines and cosines

• Or modulus/phase



Phase is important!



Phase is important!



Questions?



Convolution

• Sliding window



Convolution







Low pass http://www.reindeergraphics.com



High pass http://www.reindeergraphics.com



Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Questions?



Sampling and aliasing



More on Samples
• In signal processing, the process of mapping a 

continuous function to a discrete one is called sampling
• The process of mapping a continuous variable to a 

discrete one is called quantization
• To represent or render an image using a computer, 

we must both sample and quantize 
– Now we focus on the effects of sampling and how to fight them

discrete position

discrete
value



Sampling in the Frequency Domain

(convolution)(multiplication)

original
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sampling
grid

sampled
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Reconstruction

• If we can extract a copy of the original 
signal from the frequency domain of the 
sampled signal, we can reconstruct the 
original signal!

• But there may be 
overlap between 
the copies.



Guaranteeing Proper 
Reconstruction

• Separate by removing high 
frequencies from the original 
signal (low pass pre-filtering)

• Separate by increasing the sampling density

• If we can't separate the copies, we will have overlapping  
frequency spectrum during reconstruction → aliasing.



Sampling Theorem

• When sampling a signal at discrete 
intervals, the sampling frequency must be 
greater than twice the highest frequency of 
the input signal in order to be able to 
reconstruct the original perfectly from the 
sampled version (Shannon, Nyquist, 
Whittaker, Kotelnikov)


