Image Processing and Representations

Prepared by Behzad Sajadi
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Image processing

* Filtering, Convolution, and our friend
Joseph Fourier




What is an image”?
* We can think of an image as a function, f,

« from R’ to R:
—f( X,y ) gives the intensity at position ( x,y)

— Realistically, we expect the image only to be
defined over a rectangle, with a finite range:
« f: [a,b]x[c,d] = [0,1]

* A color image is just three functions pasted
together. We can write this as a "vector-
valued” function: (X, y)

F(x,y)=19(x,Yy)
 b(x,y)




Images as functions




Image Processing

* image filtering: change range of image
* 9(x) = h(f(x))
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* Image warping: change domain of image
* 9(x) =1f(h(x)) .
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Image Processing

* image filtering: change range of image
B . g(x) = h(f(x)) ﬁ
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* Image warping: change domain of image
* 9(x) = f(h(x))
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Point Processing

* The simplest kind of range transformations
are those independent of position Xx,y:

* g =1(f)
* This is called point processing.

* Important: every pixel for himself — spatial
information completely lost!



Negative
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FIGURE 3.4

(a) Original
digital
mammogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)



Contrast Stretching
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FIGURE 3.10
Contrast
stretching.

(a) Form of
transformation
function. (b) A
low-contrast
image. (¢) Result
of contrast
stretching.

(d) Result of
thresholding.
(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)
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Image Histograms

Diark image

Bright image

Low-contrast image

High-contrast image
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FIGURE 3.15 Four basic image types: dark, light. low contrast, high contrast. and their cor-
regponding histograms. (Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian National University, Canberra, Australia.)



iIstogram Equalization
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FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equoalization. () Cor-
responding histograms



Questions?



Filtering

* So far we have looked at range-only and
domain-only transformation

« But other transforms need to change the
range according to the spatial
neighborhood

— Linear filtering in particular



Linear filtering

» Replace each pixel by a linear
combination of its neighbors.

* The prescription for the linear
combination is called the “convolution

kernel”.
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More formally: Convolution

flmn]=1®g=> I[m-k,n-1]g[k,I]
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Linear filtering (warm-up slide)
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Linear filtering (warm-up slide)
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Blurring

coefficient

Pixel offset

Blurred (filter
applied in both
dimensions).



Impulse
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Blur examples
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Blur examples

8 5 2.4
(&
Impulse =
3 03 1]
SRR L |||!T!||| et
original Pixe|ooff3et filtered
8 5 8
edge 4 £ A
@ 0.3
TR ST il

|
original Pixe|ooff3et filtered



Questions?



Linear filtering (warm-up slide)
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Linear filtering (no change)
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(remember blurring)

coefficient

Pixel offset

original Blurred (filter
applied in both
dimensions).



Sharpening
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Sharpening example

1.7

. 11.2

8 ks 8
Q
5
S

I [T 1 I I 11 H I I

-0.25
. -0.3
original Sharpened

(differences are
accentuated; constant
areas are left untouched).



Sharpening

before after



Questions?



Studying convolutions

« Convolution is complicated
— But at least it's linear
(f+kg)- h = f-h +kg
* \We want to find a better expression

— Let’s study function whose behavior is simple
under convolution



Blurring: convolution

L Convolutlon

Input sign Kernel

Same shape, just reduced contrast!!!

This is an eigenvector

| ‘ o (output IS the input multiplied by a constant)

Output



Big Motivation for Fourier analysis

* Sine waves are eigenvectors of the
convolution operator



Other motivation for Fourier
analysis: sampling

« The sampling grid is a periodic structure
— Fourier is pretty good at handling that
— A sine wave can have serious problems with sampling

« Sampling is a linear process



Sampling Density

 |If we're lucky, sampling density is enough

/

Input Reconstructed



Sampling Density

* |If we insufficiently sample the signal, it may be
mistaken for something simpler during
reconstruction (that's aliasing!)




Motivation for sine waves

» Blurring sine waves is simple
— You get the same sine wave, just scaled down

— The sine functions are the eigenvectors of the
convolution operator

« Sampling sine waves is interesting
— Get another sine wave
— Not necessarily the same one! (aliasing)

If we represent functions (or images) with a sum of
sine waves, convolution and sampling are easy
to study



Questions?



Fourier as a change of basis

* Discrete Fourier Transform: just a big
matrix

http://www.reindeergraphics.com



To get some sense of what
basis elements look like, we
plot a basis element --- or
rather, its real part ---

as a function of x,y for some
fixed u, v. We get a function
that is constant when (ux+vy)
Is constant. The magnitude of
the vector (u, v) gives a
frequency, and its direction
gives an orientation. The
function is a sinusoid with
this frequency along the
direction, and constant
perpendicular to the
direction.
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Motivations

Computation bases
— E.qg. fast filtering

Sampling rate and filtering bandwidth
Optics: wave nature of light & diffraction
Insights



Questions?



Fourier Series

« Consider the family of complex exponentials
w,(t)=e"" where neZ

* Properties
— Periodic with period T=27nlw
— Orthogonal on any interval [T | =[t,,t, +T]

* Hence, we can write a periodic signal x(t) with
period T as

a9 — <Wk‘x>[T]
‘ <l//k‘l//k>[T]

X(t) = Z aw, () where



The Fourier Transform

Defined for infinite, aperiodic signals

Derived from the Fourier series by “extending the period
of the signal to infinity”

The Fourier transform is defined as

X (@) = %jx(t)e‘jwtdt

X(w) is called the spectrum of x(t)

It contains the magnitude and phase of each complex
exponential of frequency w in X(t)



The Fourier Transform

The inverse Fouri?r transform is defined as
X(t) == [ X (@)e"da
N2
Fourier transform pair
X(t) «— X (o)

X(t) is called the spatial domain representation

X(w) is called the frequency domain
representation
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Beware of differences

Different definitions of Fourier transform

We use

X (o) = x(t)e 1 dt

7]
27T
Other people might exclude normalization
or include 2r in the frequency

X might take o or jo as argument
Physicist use J, mathematicians use |



Questions?



Phase

« Don'’t forget the phase! Fourier transform results
In complex numbers "

Can be seen as sum of sines and Cosineﬁs
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Phase is important!




Phase is imnortant!

Figure 6.2 (a) The image shown in Figure 1.4;
(b) magnitude of the two-dimensional Fourier
transform of (a); (c) phase of the Fourier trans-
form of (a); (d) picture whose Fourier transform
has magnitude as in (b) and phase equal to zero;
(e) picture whose Fourier transform has magnitude
equal to 1 and phase as in (c); (f) picture whose
Fourier transform has phase as in (c) and magni-
tude equal to that of the transform of the picture
shown in (g).




Questions?



Convolution

 Sliding window

h(X — x) ® f(x)
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Convolution
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Analysis of our simple filters
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Questions?



Sampling and aliasing



More on Samples

 In signal processing, the process of mapping a
continuous function to a discrete one is called sampling

* The process of mapping a continuous variable to a
discrete one is called quantization

« To represent or render an image using a computer,
we must both sample and quantize
— Now we focus on the effects of sampling and how to fight them
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Sampling in the Frequency Domain

MX) Fourier A F(u)
| Transform |
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Reconstruction

* |f we can extract a copy of the original
signal from the frequency domain of the
sampled signal, we can reconstruct the

original signal!
T LP{u)(F(u)#S(u))

* But there may be
overlap between
the coplies. o




Guaranteeing Proper

Reconstruction
« Separate by removing high

frequencies from the original F]M MM ka‘
signal (low pass pre-filtering) 4

« Separate by increasing the sampling density
P )s(x) pF(u)*S(u)

Dt s~ pllanfpfle

 |f we can't separate the copies, we will have overlapping
frequency spectrum during reconstruction — aliasing.

A F(u)LP(u)*S(u)




Sampling Theorem

* When sampling a signal at discrete
intervals, the sampling frequency must be
greater than twice the highest frequency of
the input signal in order to be able to
reconstruct the original perfectly from the
sampled version (Shannon, Nyquist,
Whittaker, Kotelnikov)



