The Pinhole Camera

Figure 1: A camera.
Figure 1 shows a camera with center of projection O and the principal axis parallel to Z axis. Image plane is at focus and hence focal length f away from O. A 3D point $P=(X, Y, Z)$ is imaged on the camera's image plane at coordinate $P_{c}=(u, v)$. We will first find the camera calibration matrix C which maps 3D P to 2D P_{c}. As we have seen before, we can find P_{c} using similar triangles as

$$
\frac{f}{Z}=\frac{u}{X}=\frac{v}{Y}
$$

which gives us

$$
\begin{aligned}
& u=\frac{f X}{Z} \\
& v=\frac{f Y}{Z}
\end{aligned}
$$

Using homogeneous coordinates for P_{c}, we can write this as

$$
\left(\begin{array}{l}
u \tag{1}\\
v \\
w
\end{array}\right)=\left(\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

You can verify that this indeed generates the point $P_{c}=(u, v, w)=\left(\frac{f X}{Z}, \frac{f Y}{Z}, 1\right)$. Note that P is still not in homogeneous coordinates.

Next, if the origin of the 2D image coordinate system does not coincide with where the Z axis intersects the image plane, we need to translate P_{c} to the desired origin. Let this translation be defined by $\left(t_{u}, t_{v}\right)$. Hence, now (u, v) is

$$
\begin{aligned}
& u=\frac{f X}{Z}+t_{u} \\
& v=\frac{f Y}{Z}+t_{v}
\end{aligned}
$$

This can be expressed in a similar form as Equation 1 as

$$
\left(\begin{array}{c}
u \tag{2}\\
v \\
w
\end{array}\right)=\left(\begin{array}{llc}
f & 0 & t_{u} \\
0 & f & t_{v} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

Now, in Equation 2, P_{c} is expressed in inches. Since this is a camera image, we need to express it in inches. For this we will need to know the resolution of the camera in pixels/inch. If the pixels are square the resolution will be identical in both u and v directions of the camera image coordinates. However, for a more general case, we assume rectangle pixels with resolution m_{u} and m_{v} pixels/inch in u and v direction respectively. Therefore, to measure P_{c} in pixels, its u and v coordinates should be multiplied by m_{u} and m_{v} respectively. Thus

$$
\begin{aligned}
u & =m_{u} \frac{f X}{Z}+m_{u} t_{u} \\
v & =m_{v} \frac{f Y}{Z}+m_{v} t_{v}
\end{aligned}
$$

This can be expressed in matrix form as

$$
\left(\begin{array}{c}
u \tag{3}\\
v \\
w
\end{array}\right)=\left(\begin{array}{ccc}
m_{u} f & 0 & m_{u} t_{u} \\
0 & m_{v} f & m_{v} t_{v} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{x} & 0 & u_{o} \\
0 & \alpha_{y} & v_{o} \\
0 & 0 & 1
\end{array}\right) P=K P
$$

Note that K only depends on the intrinsic camera parameters like its focal length, principal axis and thus defines the intrinsic parameters of the camera. Sometimes K also has a skew parameter s, given by

$$
K=\left(\begin{array}{ccc}
\alpha_{x} & s & u_{o} \\
0 & \alpha_{y} & v_{o} \\
0 & 0 & 1
\end{array}\right)
$$

This usually comes in if the image coordinate axes u and v are not orthogonal to each other. Note that K is an upper triangular 3×3 matrix. This is usually called the intrinsic parameter matrix for the camera.

Now if the camera does not have its center of projection at $(0,0,0)$ and is oriented in an arbitrary fashion (not necessarily z perpendicular to the image plane), then we need a rotation and translation to make the camera coordinate system coincide with the configuration in Figure 1. Let the camera translation to origin of the XYZ coordinate be given by $T\left(T_{x}, T_{y}, T_{z}\right)$. Let the the rotation applied to coincide the principal axis with Z axis be given by a 3×3 rotation matrix R. Then the matrix formed by first applying the translation followed by the rotation is given by the 3×4 matrix

$$
E=(R \mid R T)
$$

called the extrinsic parameter matrix. So, the complete camera transformation can now represented as

$$
K(R \mid R T)=(K R \mid K R T)=K R(I \mid T)
$$

Hence P_{c}, the projection of P is given by

$$
P_{c}=K R(I \mid T) P=C P
$$

C is a 3×4 matrix usually called the complete camera calibration matrix. Note that since C is 3×4 we need P to be in 4D homogeneous coordinates and P_{c} derived by $C P$ will be in 3D homogeneous coordinates. The exact 2D location of the projection on the camera image plane will be obtained by dividing the first two coordinates of P_{c} by the third.

Camera Calibration

In this section, we will see how to find C and then how to break it up to get the intrinsic and extrinsic parameters. Though C has 12 entries, the entry in the $3 r d$ row and $4 t h$ column is 1 . Hence, in effect C has 11 unknown parameters.

Given C, we know that

$$
C=(K R \mid K R T)=(M \mid M T),
$$

where $K R=M$. Note that, given C , we can find M as the left 3×3 sub matrix of C. Next, we use $R Q$ decomposition to break M into two 3×3 matrices $M=A B$, where A is upper triangular and B is orthogonal matrix (i.e. $\left.B^{T} B=I\right)$. This upper triangular A corresponds to K and B corresponds to the rotation R. Let c_{4} denote the last column of C. From previous equation,

$$
\begin{align*}
M T & =c_{4} \tag{4}\\
T & =M^{-1} c_{4} \tag{5}
\end{align*}
$$

Thus, given C, we can find the intrinsic and extrinsic parameters through this process. But, now the next question is, how to find C for any general camera? For this, we need to find correspondances between $3 D$ points and their projections on the camera image. If we know a $3 D$ point P_{1} corresponding to $P_{c_{1}}$ on the camera image coordinate, then

$$
P_{c_{1}}=C P_{1}
$$

Or,

$$
\left(\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right)=C\left(\begin{array}{c}
X_{1} \\
Y_{1} \\
Z_{1} \\
1
\end{array}\right)
$$

However, note that 2D camera image coordinates we are detecting are $\left(\frac{u_{1}}{w_{1}}, \frac{v_{1}}{w_{1}}\right)=\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$.
Note that finding C means we have find all the 12 entries of C. Thus, we are trying to solve for 12 unknowns. Let the rows of C be given by $r_{i}, i=1,2,3$. Thus

$$
C=\left(\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right)
$$

Since we know the correspondence P_{1} and $P_{c_{1}}$, we know

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{u_{1}}{w_{1}}=\frac{r_{1} \cdot P_{1}}{r_{3} \cdot P_{1}} \\
& v_{1}^{\prime}=\frac{v_{1}}{w_{1}}=\frac{r_{2} \cdot P_{1}}{r_{3} \cdot P_{1}}
\end{aligned}
$$

which gives us two linear equations

$$
\begin{aligned}
& u_{1}^{\prime}\left(r_{3} \cdot P_{1}\right)-r_{1} \cdot P_{1}=0 \\
& v_{1}^{\prime}\left(r_{3} \cdot P_{1}\right)-r_{2} \cdot P_{1}=0
\end{aligned}
$$

Note that in these two equations, only the elements of r_{1}, r_{2} and r_{3} are the unknowns. So, we find that each $3 D$ to $2 D$ correspondence generates two linear equations. To solve for 12 unknowns, we will need at least 6 such correspondences. Usually for better accuracy, much more than 6 correspondences are used and the over-determined
system of linear equations thus formed is solved using singular value decomposition methods to generate the 12 entries of C. The correspondences are determined using fiducial based image processing methods.

3D Depth Estimation

Now we will see how given the P_{c} and C, we can find P i.e. using images of 3D world on calibrated cameras, how can we estimate the exact location of P. Let us assume that we have a $3 D$ point P_{1} whose image on a camera defined by the matrix C_{1} is given by $P_{c_{1}}$. Let the point P be represented in homogeneous coordinates as (X, Y, Z, W).

So, we know

$$
P_{c_{1}}=\left(\begin{array}{c}
u_{1} \tag{7}\\
v_{1} \\
w_{1}
\end{array}\right)=C_{1}\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right)
$$

Again note that the 2D points we are detecting in the camera image have coordinates $\left(\frac{u_{1}}{w_{1}}, \frac{v_{1}}{w_{1}}\right)=\left(u_{1}^{\prime}, v_{1}^{\prime}\right)$. Hence, the rows of the calibration matrix C_{1} are given by $r_{i}^{C_{1}}, i=1,2,3$. So, from Equation 7, we get two linear equations as

$$
\begin{aligned}
& u_{1}^{\prime}\left(r_{3}^{C_{1}} \cdot P\right)-r_{1}^{C_{1}} \cdot P=0 \\
& v_{1}^{\prime}\left(r_{3}^{C_{1}} \cdot P\right)-r_{2}^{C_{1}} \cdot P=0
\end{aligned}
$$

So, from each camera we can generate two linear equations. We have 4 unknowns to be solved given by X, Y, Z, W. Thus, we need at least two camera (with different calibration matrices) and we need to find the point $P_{c_{2}}$ on this camera's image that corresponds to the same $3 D$ point P. Finding the image of the same $3 D$ points on two different cameras images is a hard problem. This is the reason that humans need two eyes to resolve depth. Also, note that this mathematics only takes into account the binocular cues like disparity. The reason we humans can still resolve depth to a certain extent with one eye, is because we use several oculomotor and monocular cues. These are not present for a camera and hence depth estimation is not possible with a single camera. Of course, for greater accuracy often more than two cameras are used (called stereo rigs) and singular value decomposition is used to solve the over-determined linear equations that result.

Homography

If two cameras see points lying on a plane, a relationship between them can be easily found without going through explicit camera calibration. This relationship that relates the two cameras is called the homography.

Figure 2 illustrates the situation. Let us assume a point P_{π} that lies on the plane π. Let the normal to the plane be defined by $N=(a, b, c)$. Thus the plane equation is given by

$$
\left(\begin{array}{ll}
N & 1 \tag{8}
\end{array}\right) \cdot P=0
$$

where P is any point in the $3 D$ world.
Let the two cameras be defined by calibration matrices by C_{1} and C_{2}. Let the image of P_{π} on camera C_{1} and C_{2} be P_{π}^{1} and P_{π}^{2} respectively. From this, we know that

$$
P_{\pi}^{1}=\left(\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right)=C_{1} \cdot P_{\pi}
$$

Figure 2: Homography between two cameras seeing a scene.

This means that in $3 D$, the point P_{π} lies on the ray $\left(u_{1}, v_{1}, w_{1}, 0\right)^{T}$. However, the scale factor is unknown. Let this unknown scale factor be denoted by τ. Then we get

$$
P_{\pi}=\left(\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1} \\
\tau
\end{array}\right)=\binom{P_{\pi}^{1}}{\tau}
$$

Next, since P_{π} satisfies the plane equation, we get from Equation 8 ,

$$
\tau=-N . P_{\pi}^{1}
$$

Hence,

$$
P_{\pi}=\left(\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1} \\
\tau
\end{array}\right)=\binom{I}{-N} P_{\pi}^{1}
$$

Note, I is a 3×3 matrix and N is a 1×3 matrix. Hence, this is a 4×3 matrix.
Now, let $C_{2}=\left(\begin{array}{ll}A_{2} & a_{2}\end{array}\right)$, where A_{2} is the 3×3 matrix and a_{2} is a 3×1 vector. Then,

$$
\begin{align*}
P_{\pi}^{2} & =C_{2} \cdot P_{\pi} \tag{9}\\
& =\left(\begin{array}{ll}
A_{2} & a_{2}
\end{array}\right)\binom{I}{-N} P_{\pi}^{1} \tag{10}
\end{align*}
$$

Note that the first matrix is a 3×4 matrix and the second one is a 4×3 matrix. Hence, multiplication of these two will give a 3×3 matrix. This is what we call the homography H. Hence,

$$
P_{\pi}^{2}=\left(A_{2}-a_{2} N\right) P_{\pi}^{1}=H P_{\pi}^{1}
$$

Note that a_{2} is a 3×1 matrix and N is a 1×3 matrix. Thus, $a_{2} N$ would generate a 3×3 matrix that can be subtracted from 3×3 matrix A_{2} to generate H. Thus, H is a 3×3 matrix that relates one camera image with another and defines the homography. Using this matrix, the image from one camera can be warped to the view of another camera.

Note that both camera calibration matrix C and homography H can be correct upto a scale factor. Hence, we can assume the bottom right element to be 1 . This reduces the number of unknowns when finding C from 12 to 11 . Similarly, when computing H the number of unknowns are 8 . So, in order to reconstruct H, we have to see a plane with two cameras. We have to find the image of same point on the plane as seen by two cameras. So, basically we need to know the corresponding points P_{π}^{1} and P_{π}^{2} in the two cameras. From each correspondence, using Equation 14, we can generate two linear equations. To find the 8 unknowns in H, we need just 4 correspondences. So, now instead of going through a full camera calibration (finding 11 parameters for two cameras leading to 22 parameters), with these 8 homography parameters we can relate one camera with another.

