The Pinhole Camera

Figure 1: A camera.

Figure 1 shows a camera with center of projection O and the principal axis parallel to Z axis. Image plane is at focus and hence focal length f away from O. A 3D point P = (X, Y, Z) is imaged on the camera's image plane at coordinate $P_c = (u, v)$. We will first find the camera calibration matrix C which maps 3D P to 2D P_c . As we have seen before, we can find P_c using similar triangles as

$$\frac{f}{Z} = \frac{u}{X} = \frac{v}{Y}$$

which gives us

$$u = \frac{fX}{Z}$$
$$v = \frac{fY}{Z}$$

Using homogeneous coordinates for P_c , we can write this as

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
(1)

You can verify that this indeed generates the point $P_c = (u, v, w) = (\frac{fX}{Z}, \frac{fY}{Z}, 1)$. Note that P is still not in homogeneous coordinates.

Next, if the origin of the 2D image coordinate system does not coincide with where the Z axis intersects the image plane, we need to translate P_c to the desired origin. Let this translation be defined by (t_u, t_v) . Hence, now (u, v) is

$$u = \frac{fX}{Z} + t_u$$
$$v = \frac{fY}{Z} + t_v$$

This can be expressed in a similar form as Equation 1 as

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} f & 0 & t_u \\ 0 & f & t_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$
(2)

Now, in Equation 2, P_c is expressed in inches. Since this is a camera image, we need to express it in inches. For this we will need to know the resolution of the camera in pixels/inch. If the pixels are square the resolution will be identical in both u and v directions of the camera image coordinates. However, for a more general case, we assume rectangle pixels with resolution m_u and m_v pixels/inch in u and v direction respectively. Therefore, to measure P_c in pixels, its u and v coordinates should be multiplied by m_u and m_v respectively. Thus

$$u = m_u \frac{fX}{Z} + m_u t_u$$
$$v = m_v \frac{fY}{Z} + m_v t_v$$

This can be expressed in matrix form as

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} m_u f & 0 & m_u t_u \\ 0 & m_v f & m_v t_v \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} \alpha_x & 0 & u_o \\ 0 & \alpha_y & v_o \\ 0 & 0 & 1 \end{pmatrix} P = KP$$
(3)

Note that K only depends on the intrinsic camera parameters like its focal length, principal axis and thus defines the intrinsic parameters of the camera. Sometimes K also has a skew parameter s, given by

$$K = \left(\begin{array}{ccc} \alpha_x & s & u_o \\ 0 & \alpha_y & v_o \\ 0 & 0 & 1 \end{array}\right)$$

This usually comes in if the image coordinate axes u and v are not orthogonal to each other. Note that K is an upper triangular 3×3 matrix. This is usually called the *intrinsic parameter* matrix for the camera.

Now if the camera does not have its center of projection at (0,0,0) and is oriented in an arbitrary fashion (not necessarily z perpendicular to the image plane), then we need a rotation and translation to make the camera coordinate system coincide with the configuration in Figure 1. Let the camera translation to origin of the XYZ coordinate be given by $T(T_x, T_y, T_z)$. Let the the rotation applied to coincide the principal axis with Z axis be given by a 3×3 rotation matrix R. Then the matrix formed by first applying the translation followed by the rotation is given by the 3×4 matrix

$$E = (R \mid RT)$$

called the extrinsic parameter matrix. So, the complete camera transformation can now represented as

$$K(R \mid RT) = (KR \mid KRT) = KR(I \mid T)$$

Hence P_c , the projection of P is given by

$$P_c = KR(I \mid T)P = CP$$

C is a 3×4 matrix usually called the *complete camera calibration* matrix. Note that since C is 3×4 we need P to be in 4D homogeneous coordinates and P_c derived by CP will be in 3D homogeneous coordinates. The exact 2D location of the projection on the camera image plane will be obtained by dividing the first two coordinates of P_c by the third.

Camera Calibration

In this section, we will see how to find C and then how to break it up to get the intrinsic and extrinsic parameters. Though C has 12 entries, the entry in the 3rd row and 4th column is 1. Hence, in effect C has 11 unknown parameters.

Given C, we know that

$$C = (KR \mid KRT) = (M \mid MT),$$

where KR = M. Note that, given C, we can find M as the left 3×3 sub matrix of C. Next, we use RQ decomposition to break M into two 3×3 matrices M = AB, where A is upper triangular and B is orthogonal matrix (i.e. $B^TB = I$). This upper triangular A corresponds to K and B corresponds to the rotation R. Let c_4 denote the last column of C. From previous equation,

$$MT = c_4 \tag{4}$$

$$T = M^{-1}c_4 \tag{5}$$

(6)

Thus, given C, we can find the intrinsic and extrinsic parameters through this process. But, now the next question is, how to find C for any general camera? For this, we need to find *correspondances* between 3D points and their projections on the camera image. If we know a 3D point P_1 corresponding to P_{c_1} on the camera image coordinate, then

 $P_{c_1} = CP_1$

Or,

$$\left(\begin{array}{c} u_1\\ v_1\\ w_1 \end{array}\right) = C \left(\begin{array}{c} X_1\\ Y_1\\ Z_1\\ 1 \end{array}\right)$$

However, note that 2D camera image coordinates we are detecting are $(\frac{u_1}{w_1}, \frac{v_1}{w_1}) = (u'_1, v'_1)$.

Note that finding C means we have find all the 12 entries of C. Thus, we are trying to solve for 12 unknowns. Let the rows of C be given by r_i , i = 1, 2, 3. Thus

$$C = \left(\begin{array}{c} r_1 \\ r_2 \\ r_3 \end{array}\right)$$

Since we know the correspondence P_1 and P_{c_1} , we know

$$u_1' = \frac{u_1}{w_1} = \frac{r_1 \cdot P_1}{r_3 \cdot P_1}$$
$$v_1' = \frac{v_1}{w_1} = \frac{r_2 \cdot P_1}{r_3 \cdot P_1}$$

which gives us two linear equations

$$u_1'(r_3.P_1) - r_1.P_1 = 0$$

$$v_1'(r_3.P_1) - r_2.P_1 = 0$$

Note that in these two equations, only the elements of r_1, r_2 and r_3 are the unknowns. So, we find that each 3D to 2D correspondence generates two linear equations. To solve for 12 unknowns, we will need at least 6 such correspondences. Usually for better accuracy, much more than 6 correspondences are used and the over-determined

system of linear equations thus formed is solved using singular value decomposition methods to generate the 12 entries of C. The correspondences are determined using fiducial based image processing methods.

3D Depth Estimation

Now we will see how given the P_c and C, we can find P i.e. using images of 3D world on *calibrated cameras*, how can we estimate the exact location of P. Let us assume that we have a 3D point P_1 whose image on a camera defined by the matrix C_1 is given by P_{c_1} . Let the point P be represented in homogeneous coordinates as (X, Y, Z, W).

So, we know

$$P_{c_1} = \begin{pmatrix} u_1 \\ v_1 \\ w_1 \end{pmatrix} = C_1 \begin{pmatrix} X \\ Y \\ Z \\ W \end{pmatrix}$$
(7)

Again note that the 2D points we are detecting in the camera image have coordinates $(\frac{u_1}{w_1}, \frac{v_1}{w_1}) = (u'_1, v'_1)$. Hence, the rows of the calibration matrix C_1 are given by $r_i^{C_1}$, i = 1, 2, 3. So, from Equation 7, we get two linear equations as

$$u_1'(r_3^{C_1}.P) - r_1^{C_1}.P = 0$$
$$v_1'(r_3^{C_1}.P) - r_2^{C_1}.P = 0$$

So, from each camera we can generate two linear equations. We have 4 unknowns to be solved given by X, Y, Z, W. Thus, we need at least two camera (with different calibration matrices) and we need to find the point P_{c_2} on this camera's image that corresponds to the same 3D point P. Finding the image of the same 3D points on two different cameras images is a hard problem. This is the reason that humans need two eyes to resolve depth. Also, note that this mathematics only takes into account the binocular cues like disparity. The reason we humans can still resolve depth to a certain extent with one eye, is because we use several oculomotor and monocular cues. These are not present for a camera and hence depth estimation is not possible with a single camera. Of course, for greater accuracy often more than two cameras are used (called stereo rigs) and singular value decomposition is used to solve the over-determined linear equations that result.

Homography

If two cameras see points lying on a plane, a relationship between them can be easily found without going through explicit camera calibration. This relationship that relates the two cameras is called the *homography*.

Figure 2 illustrates the situation. Let us assume a point P_{π} that lies on the plane π . Let the normal to the plane be defined by N = (a, b, c). Thus the plane equation is given by

$$(N \ 1).P = 0$$
 (8)

where P is any point in the 3D world.

Let the two cameras be defined by calibration matrices by C_1 and C_2 . Let the image of P_{π} on camera C_1 and C_2 be P_{π}^1 and P_{π}^2 respectively. From this, we know that

$$P_{\pi}^{1} = \begin{pmatrix} u_{1} \\ v_{1} \\ w_{1} \end{pmatrix} = C_{1}.P_{\pi}$$

Figure 2: Homography between two cameras seeing a scene.

This means that in 3D, the point P_{π} lies on the ray $(u_1, v_1, w_1, 0)^T$. However, the scale factor is unknown. Let this unknown scale factor be denoted by τ . Then we get

$$P_{\pi} = \begin{pmatrix} u_1 \\ v_1 \\ w_1 \\ \tau \end{pmatrix} = \begin{pmatrix} P_{\pi}^1 \\ \tau \end{pmatrix}$$

Next, since P_{π} satisfies the plane equation, we get from Equation 8,

$$\tau = -N.P_{\pi}^{1}$$

Hence,

•

$$P_{\pi} = \begin{pmatrix} u_1 \\ v_1 \\ w_1 \\ \tau \end{pmatrix} = \begin{pmatrix} I \\ -N \end{pmatrix} P_{\pi}^1$$

Note, I is a 3×3 matrix and N is a 1×3 matrix. Hence, this is a 4×3 matrix.

Now, let $C_2 = (A_2 \ a_2)$, where A_2 is the 3×3 matrix and a_2 is a 3×1 vector. Then,

$$P_{\pi}^2 = C_2 P_{\pi} \tag{9}$$

$$= (A_2 \ a_2) \begin{pmatrix} I \\ -N \end{pmatrix} P_{\pi}^1 \tag{10}$$

(11)

Note that the first matrix is a 3×4 matrix and the second one is a 4×3 matrix. Hence, multiplication of these two will give a 3×3 matrix. This is what we call the homography *H*. Hence,

$$P_{\pi}^2 = (A_2 - a_2 N) P_{\pi}^1 = H P_{\pi}^1$$

6

Note that a_2 is a 3×1 matrix and N is a 1×3 matrix. Thus, a_2N would generate a 3×3 matrix that can be subtracted from 3×3 matrix A_2 to generate H. Thus, H is a 3×3 matrix that relates one camera image with another and defines the homography. Using this matrix, the image from one camera can be warped to the view of another camera.

Note that both camera calibration matrix C and homography H can be correct up to a scale factor. Hence, we can assume the bottom right element to be 1. This reduces the number of unknowns when finding C from 12 to 11. Similarly, when computing H the number of unknowns are 8. So, in order to reconstruct H, we have to see a plane with two cameras. We have to find the image of same point on the plane as seen by two cameras. So, basically we need to know the corresponding points P_{π}^1 and P_{π}^2 in the two cameras. From each correspondence, using Equation 14, we can generate two linear equations. To find the 8 unknowns in H, we need just 4 correspondences. So, now instead of going through a full camera calibration (finding 11 parameters for two cameras leading to 22 parameters), with these 8 homography parameters we can relate one camera with another.