Color in Visualization

ICS 288: Visual Perception

Color selection and design

Color harmony
Constraint by practical and functional limits dictated by perception

- Convention
- Material cost

Principles

Laid down in late 70s
Changed little since then
RGB, HSV or HSL

Principles

\lrcorner Good design

- Focus attention using contrast
- Unifies using analogy
- Three primaries
- Red, Blue and Yellow
- Three secondaries
- Purple, Green and Orange
\lrcorner Analogous together, contrasting opposite

- Complement: highest contrast

Principles

Different types of color blend
Chroma scale

- Same value and hue, but diffferent saturation
- Very difificult to reproduce
- Should produce good gray scale

Controlling color value

Contrast in value critical for shapes and edges

- Perceptually edges are more due to Juminance contrast
- Robust to grayscale conversion
- ISO standards specify 3-5: 1 ratio
\lrcorner Important for sharpness and legjibility
Different hue, same value for buttons, tabs
- Denoting equally important entities

More commonly

- Artists think about gradation and mixtures that may not lie precisely along the perceptual dimensions

Tint - lightened desaturated hue by adding white

- Tone - darkened and grayed by adding black
- Shade - mixed with both white and black

More Commonly

Avoid Color on Color

- Strengthen or Weaken
- Simultaneous contrast
\lrcorner Depth of field varies with wavelength
- Low intensity leads to vibrating edges
\lrcorner Low density of 5 cones
- Avoid blue edges
\lrcorner Combined with variation in DOF
- Especially on dark backgrounds like black

Color Blend

- Commonly is hue-white and hue-black
\lrcorner Blend shows artifacts, is a stress case
- Quantization, linearity
- Leading to contours
- Interpolation path in some space

How it looks depends on the space

- RGB for monitor, CMYK for print
- Gamut mapping causes problems

Color Schemes

Many books on series of schemes
\lrcorner I mportant for conveying the mood of content

- Warm red and yellow palette- Vibrant
- Cool blue and green - Muted
- Saturated - Youth
- Sulodued/Unsaturated- Sophistication/Maturity

Color Harmonious Schemes

- Monochromatic
\lrcorner Analogous
- Complementary

Split complementary

Color Selection Tools

-3D mapped to a set of 2D and/or 1D sliders

- 3 slides each for a dimension (RGB, HSL)

Photoshop
\lrcorner 2D chromaticity plane and 1D Iuminance slider

- Powerpoint

Some form of HSL or HSV

I nformation Visualization

- To label
- As noun
- To measure

As quantity
\lrcorner To imitate reality
As representation

- To decorate

As beauty

Good and Bad Uses

Should be calrifying - Not confusing
Should be tasteful - Not clumsy
Should be robust
Across media, viewers and viewing condifions
Do no harm policy

Maps

\lrcorner Legend - label

- Shape and height of terrain by shading quantity to measure
- Blue water and brown land accented by green mangrove - representatior
- Pleasant to look at harmonious as well as informative

Maps

\lrcorner Legend - label
\lrcorner Shape and height of terrain by shading - quantity
\lrcorner Blue water and brown land accented by green mangrove representation
」 Pleasant to look at harmonious as well as informative

Medical Visualization

\lrcorner No color in MRJ

- Maps grayscales to densities
- Replacing grayscale with color
- Pseudocolor

Yellow-green features

Color to LabeJ

Color to Label

Very low level perceptual phenomenon

- Pop out feature

7348572647568799860 6947264785934848696 7847367410293635587 9504947825364809165 7381343547502184676 5749129475462514375 4960976572351432750 6506787261433245279 6476125612781056895 4672354121534654987 6072376142385385490 0163201864798012878

7348572647568799860 6947264785934848696 7847367410293635587 9504947825364809165 7381343547502184676 5749129475462514375 4960976572351432750 6506787261433245279 6476125612781056895 4672354121534654987 6072376142385385490 0163201864798012878

7348572647568799860 6947264785934848696 7847367410293635587 9504947825364809165 7381343547502184676 5749129475462514375 4960976572351432750 6506787261433245279 6476125612781056895 4672354121534654987 6072376142385385490 0163201864798012878

Color to LabeJ

- Can be used to group

Anにin oltin th nnn nitit fnattirn

	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
red	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
green	22.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
blue	13.17	31.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
gray	63.46	73.30	78.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
black	0.66	0.70	0.77	0.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
						1.09	0.47	0.58	0.70	0.44	0.54	0.71

Color to LabeJ

Effective when a small number of colors are used against neutral background

- Remember names instead of hues

I Information should not conflict with color names

- e.g. green stop sign
\lrcorner Cognitive influence

RED
 ORANGE

PURPLE
BLUE
BROWN
GREEN

Color to Quantify

\lrcorner Most natural

- Scale that varies in value or saturation

U Used in Cartography

- Perceptually no hue scale
- Qualitative

Same value, diffierent hue

- Sequential
- Scale in value/saturation
\perp Diverging
- Cross fade through neutral

Diverging Scale

Examples

UCIrvine
University of California, Irvine

Examples

Multivariate Data

\lrcorner Difficult to introoluce color without causino confusion

Multivariate Data

Univariate - Map to a line

- Bivariate - Map to a plane
- 3 variables - Map to a volume
$\lrcorner 2 \mathrm{D}$ - one dimension on value, another on saturation
Only one that is perceptually intuitive
- Everything else has to be learned
\lrcorner Using patterns with colors often help
- Especially if it exploits the relationship across variables

Making color robust

Accommodating viewers with anomalous vision

- Good contrast in values
- Reinforce with encoding in shape and size
\lrcorner Stop sign is hexagonal in addition to being red

Making color robust

\lrcorner Accommodating dififferent media

- Gamut Mapping - lightening or darkening, hue shifts
- Scales - Uniform and non-uniform
- Usually map a few key colors

Define some robust way to move between them in a consistent fashion

