

Color in Visualization

ICS 288: Visual Perception

Color selection and design

Color harmony

- Constraint by practical and functional limits dictated by perception
 - Convention
 - Material cost

Laid down in late 70s
Changed little since then
RGB, HSV or HSL

Principles

Good design

- Focus attention using contrast
- Unifies using analogy
- Three primaries
 - Red, Blue and Yellow
- Three secondaries
 - Purple, Green and Orange
- Analogous together, contrasting opposite
 - Complement: highest contrast

Principles

- Different types of color blend
- Chroma scale
- Same value and hue, but different saturation
 Very difficult to reproduce
 Should produce good gray scale

Controlling color value

- Contrast in value critical for shapes and edges
 - Perceptually edges are more due to luminance contrast
 - Robust to grayscale conversion
- ISO standards specify 3-5:1 ratio
- Important for sharpness and legibility
- Different hue, same value for buttons, tabs
 - Denoting equally important entities

Contrast is important Contrast is important

More commonly

Artists think about gradation and mixtures that may not lie precisely along the perceptual dimensions
 Tint – lightened desaturated hue by adding white
 Tone – darkened and grayed by adding black
 Shade – mixed with both white and black

More Commonly

Slide 8

Strengthen or Weaken Simultaneous contrast Depth of field varies with wavelength Low intensity leads to vibrating edges Low density of S cones Avoid blue edges Combined with variation in DOF Especially on dark backgrounds like black

Color Blend

Commonly is hue-white and hue-black
Blend shows artifacts, is a stress case

Quantization, linearity
Leading to contours

Interpolation path in some space

How it looks depends on the space
RGB for monitor, CMYK for print
Gamut mapping causes problems

Color Schemes

Many books on series of schemes
 Important for conveying the mood of content
 Warm red and yellow palette- Vibrant
 Cool blue and green – Muted
 Saturated – Youth
 Subdued/Unsaturated– Sophistication/Maturity

Color Harmonious Schemes

- Monochromatic
- Analogous
- Complementary
- Split complementary

Color Selection Tools

3D mapped to a set of 2D and/or 1D sliders

 3 slides each for a dimension (RGB, HSL)
 Photoshop

 2D chromaticity plane and 1D luminance slider

 Powerpoint

 Some form of HSL or HSV

Information Visualization

To label

As noun

To measure

As quantity

To imitate reality

As representation

To decorate

As beauty

Good and Bad Uses

Should be calrifying - Not confusing
 Should be tasteful - Not clumsy
 Should be robust

 Across media, viewers and viewing conditions

 Do no harm policy

Legend – label
 Shape and height of terrain by shading – quantity to measure
 Blue water and brown land accented by green mangrove – representation
 Pleasant to look at –

harmonious as well as informative

Maps

- Legend label
- Shape and height of terrain by shading quantity
- Blue water and brown land accented by green mangrove – representation
- Pleasant to look at harmonious as well as informative

Medical Visualization

No color in MRI
Maps grayscales to densities
Replacing grayscale with color
Pseudocolor

Yellow-green features

Very low level perceptual phenomenon Pop out feature

Aditi Majumder, UCI

Can be used to group

Again due to non-out feature

~	Y	Z	Х	Y	Ζ	Х	Y	Ζ	X	Y	Z
25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
2.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
3.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
3.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
33	3.46	3.46 73.30	3.46 73.30 78.05	3.46 73.30 78.05 64.66	3.46 73.30 78.05 64.66 71.99	3.46 73.30 78.05 64.66 71.99 90.08	3.46 73.30 78.05 64.66 71.99 90.08 52.96	3.46 73.30 78.05 64.66 71.99 90.08 52.96 62.49	3.46 73.30 78.05 64.66 71.99 90.08 52.96 62.49 67.99	3.46 73.30 78.05 64.66 71.99 90.08 52.96 62.49 67.99 45.54	XYZXYZXYZXY5.3713.700.0526.2714.130.0418.4110.160.0517.439.302.1451.240.3520.6849.170.4421.1146.000.2016.3637.953.173.7174.8915.385.2086.8311.553.3765.539.963.443.4673.3078.0564.6671.9990.0852.9662.4967.9945.5453.650.660.700.770.630.661.090.470.580.700.440.54

												Ζ
	25.37											
	22.14											
	13.17											
	63.46											
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71

Effective when a small number of colors are used against neutral background

 Remember names instead of hues

 Information should not conflict with color names – e.g. green stop sign

 Cognitive influence

 RED ORANGE PURPLE BLUE

BROWN GREEN

Color to Quantify

Most natural

Scale that varies in value or saturation
Used in Cartography
Perceptually no hue scale

Qualitative

Same value, different hue

Sequential

Scale in value/saturation

Diverging

Cross fade through neutral

Examples

Examples

Multivariate Data

Difficult to introduce color without causing

confusion

Multivariate Data

- Univariate Map to a line
- Bivariate Map to a plane
- 3 variables Map to a volume
- 2D one dimension on value, another on saturation
- Only one that is perceptually intuitive
 Everything else has to be learned
 Using patterns with colors often help
 - Especially if it exploits the relationship across variables

Making color robust

Accommodating viewers with anomalous vision
 Good contrast in values
 Reinforce with encoding in shape and size
 Stop sign is hexagonal in addition to being red

Making color robust

Accommodating different media
 Gamut Mapping – lightening or darkening, hue shifts

Scales – Uniform and non-uniform

Usually map a few key colors

Define some robust way to move between them in a consistent fashion