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Abstract. As the dynamic range of a digital camera is narrower
than that of a real scene, the captured image requires a tone curve
or contrast correction to reproduce the information in dark regions.
Yet, when using a global correction method, such as histogram-
based methods and gamma correction, an unintended contrast
enhancement in bright regions can result. Thus, a multiscale retinex
algorithm using Gaussian filters was already proposed to enhance
the local contrast of a captured image using the ratio between the
intensities of an arbitrary pixel in the captured image and its sur-
rounding pixels. The intensity of the surrounding pixels is estimated
using Gaussian filters and weights for each filter, and to obtain better
results, these Gaussian filters and weights are adjusted in relation to
the captured image. Nonetheless, this adjustment is currently a sub-
jective process, as no method has yet been developed for optimizing
the Gaussian filters and weights according to the captured image.
Therefore, this article proposes local contrast enhancement based
on an adaptive multiscale retinex using a Gaussian filter set adapted
to the input image. First, the weight of the largest Gaussian filter is
determined using the local contrast ratio from the intensity distribu-
tion of the input image. The other Gaussian filters and weights for
each Gaussian filter in the multiscale retinex are then determined
using a visual contrast measure and the maximum color difference of
the color patches in the Macbeth color checker. The visual contrast
measure is obtained based on the product of the local standard devia-
tion and locally averaged luminance of the image. Meanwhile, to eval-
uate the halo artifacts generated in large uniform regions that abut to
form a high contrast edge, the artifacts are evaluated based on the
maximum color difference between each color of the pixels in a patch
in the Macbeth color and the averaged color in CIELAB standard color
space. When considering the color difference for halo artifacts, the pa-
rameters for the Gaussian filters and weights representing a higher
visual contrast measure are determined using test images. In addition,
to reduce the induced graying-out, the chroma of the resulting image
is compensated by preserving the chroma ratio of the input image
based on the maximum chroma values of the sRGB color gamut in
the lightness–chroma plane. In experiments, the proposed method
is shown to improve the local contrast and saturation in a natural way.
VC 2011 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2011.55.4.040502]

INTRODUCTION
Human vision is a complicated automatic self-adapting sys-

tem that is capable of seeing over 5 orders of magnitude

simultaneously and can gradually adapt to natural world

scenes with a high dynamic range of over 9 orders of mag-

nitude. Thus, human vision can concurrently perceive

details in both bright and dark regions.1,2 In contrast, cur-

rent color imaging capture and display devices, such as dig-

ital cameras, cathode ray tubes (CRTs), liquid crystal

displays (LCDs), plasma display panels (PDPs), and organic

light-emitting diodes (OLEDs), are unable to capture and

represent a dynamic range of more than 100:1. This means

that the captured images suffer from poor scene detail and

color reproduction in dark areas, especially in the case of a

scene that contains both bright and dark areas. Nonetheless,

despite the need to adjust the contrast of an image captured

by a digital camera to represent the viewer’s perception of

the natural scene,3–5 this remains a difficult problem, insofar

as the human visual system is extremely complex and cur-

rent techniques are unable to replicate it completely.

As the sensitivity of the human eye changes locally

according to the position of an object and the illuminant in

the scene, a spatially adaptive method is required to over-

come these limitations, which has led to the recent develop-

ment of the single-scale retinex model, based on the retinex

theory as a model of human vision perception.6 The single-

scale retinex model utilizes the ratio of the lightness for a

small central field in the region of interest to the average

lightness over an extended field, where a Gaussian filter is

generally used to obtain the average lightness. However,

application of the single-scale retinex model introduces

several problems, such as halos and graying-out, depending

on the size of the Gaussian filter, which varies according to

the input image.

Therefore, to solve these problems and stabilize the

performance of the single-scale retinex model, a multiscale

retinex algorithm was proposed by Jobson.7–9 When using

a small-size Gaussian filter, the local contrast and detail

in the resulting image are enhanced, yet the artifacts

are increased, and the opposite occurs with a large-size

Gaussian filter. Thus, for the multiscale retinex algorithm,

several images are created using the single-scale retinex

algorithm with various sizes of Gaussian filter, and these

images are then weighted and summed to reduce the halos

and enhance the local contrast. However, the sizes and

weights of the Gaussian filters in the multiscale retinex

model are currently determined through subjective evalua-

tion, as there is no optimization method. Moreover, if the

need for contrast enhancement is low, usage of a multiscale
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retinex with fixed parameters can result in an unnaturally

enhanced image.

Accordingly, to resolve these problems, this article pro-

poses a color correction method using a multiscale retinex

that takes account of the dominant chromaticity to

improve the local contrast and color rendition. The sizes

and weights of the Gaussian filter set for the multiscale

retinex model are determined using a visual contrast mea-

sure (VCM) and halo measure. The visual contrast measure

is obtained based on the product of the local standard

deviation and locally averaged luminance of the image.7

Meanwhile, the halo artifacts generated in large uniform

regions with a high contrast edges are evaluated based on

the maximum color difference between each color of the

pixels in a patch in the Macbeth color checker and the aver-

aged color in CIELAB standard color space. The parameters

for the Gaussian filters and weights are then determined

considering the visual contrast and halo measures. In addi-

tion, to enhance the input image adaptively, the weight of

the largest Gaussian filter is determined according to the

distribution of the local luminance in the input image. Thus,

if the original image does not need to have its contrast

enhanced, when the weight of large Gaussian filter becomes

higher, the contrast of the resulting image remains similar to

that of the original image. This happens as the resulting

image from the single-scale retinex process using a large

Gaussian filter is close to the original image.

For the remainder of this article, the following section

provides a brief comparison of the single-scale retinex algo-

rithm with a multiscale retinex. Thereafter, the proposed

multiscale retinex algorithm is presented. Finally, experi-

ments are used to compare the proposed method with the

conventional multiscale retinex method.

Multiscale Retinex Model

The intensity I measured by a camera sensor at position XO

can be modeled as

IðXI Þ ¼ GðXOÞ
ð

Rðk;XOÞLðkÞSðkÞdk (1)

where G(XO) is the scaling factor resulting from the geome-

try of the patch at position XO , R(k, XO) denotes the reflec-

tance at position XO , L(k) is the radiance given off by the

light source, and S(k) describes the sensitivity of the

sensors.10

It is assumed that the response functions of the sensors

have a very narrow-band, i.e., they can be approximated by

a delta function. Let ki with i [ fr,g,bg be the wavelengths to

which the sensors respond. Under a nonuniform illumi-

nant, the intensity measured by the sensor can be modeled

as follows:2

Iiðx; yÞ ¼ Gðx; yÞRiðx; yÞLiðx; yÞ; (2)

where G(x,y) is the factor that depends on the scene geome-

try, Ri(x,y) is the reflectance for wavelength ki, and Li(x,y)

is the irradiance at position (x,y) for wavelength ki.

The image irradiance is proportional to the scene radi-

ance, and since the viewing perspective is assumed to be a

flat surface illuminated by a single light source, the scene

radiance is proportional to the product of the irradiance

falling on the surface and the reflectance of the surface.

First, light of a single wavelength is considered. When

assuming an orthographic projection, i.e., a direct corre-

spondence between the image and surface coordinates, the

image intensity at point (x,y) for a single band of the image

is as follows:

Iðx; yÞ ¼ Rðx; yÞLðx; yÞ; (3)

where R(x,y) is the reflectance at point (x,y) on the surface

and L(x,y) is the irradiance falling on point (x,y) on the

surface. The reflectance and irradiance can be separated

into two components by taking the logarithm of the sen-

sor’s response as follows:

log Iðx; yÞ ¼ log Rðx; yÞ þ log Lðx; yÞ: (4)

A Gaussian filter is used to estimate the illuminant compo-

nent, and the reflectance is calculated based on the differ-

ence between the original image and the Gaussian-filtered

image in logarithmic space as follows:

Oiðx; yÞ ¼ log Iiðx; yÞ � log Fðx; yÞ � Iiðx; yÞf g; (5)

where i indicates the RGB channel, Ii(x,y) is the input

image in the RGB channel for each coordinate position

(x,y), F(x,y) is the Gaussian filter, and the symbol “*”

denotes the convolution operation.6 The Gaussian filter is

given as follows:

Fðx; yÞ ¼ Ke�ðx
2þy2Þ=r2

and

ð ð
Fðx; yÞdxdy ¼ 1; (6)

where K is the normalized constant coefficient and r repre-

sents the standard deviation for the Gaussian function,

which is very important, as the performance of a single-

scale retinex depends on the standard deviation, r, of the

Gaussian filter. Figure 1 shows the results of a single-scale

retinex when varying the standard deviation r. When using

a small scale, r¼ 30, the image contrast was locally

enhanced with halo artifacts, whereas a large scale, r¼ 90,

removed the chromaticity of the illuminant without chang-

ing the local contrast. Consequently, determining the

appropriate scale is difficult, as the result of a particular

scale also depends on the input image.

The idea of a multiscale retinex was introduced to stabi-

lize the results of the single-scale retinex model. The halo

artifacts resulting from a single-scale retinex using a Gaussian

filter occur between the center of a uniform area and the

edge of that area.6 For example, the case of an input signal

with a small peak and uniform area is shown in Figure 2(a).

To estimate the illuminant component, the input signal is

blurred by a Gaussian filter (Fig. 2(b)), the input signal is

then divided by the blurred signal (Fig. 2(c)), and Fig. 2(d)

shows the output signal. The small peak became higher after

dividing the input image by the blurred image, whereas the
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uniform area became concave, resulting in halo artifacts. The

concavity depended on the scale of the Gaussian filter, i.e., a

smaller scale produced more concavity and vice versa.

Figure 3(a) shows two Gaussian filters and Fig. 3(b)

shows the output signals enhanced by the Gaussian filters

and average signal of the output signals. When compared

with the input signal in Fig. 2(a), the output signal with the

large Gaussian filter was flatter than the other output sig-

nals instead of reducing the height of the peak. However,

the concavity of the average signal was more normalized

than that of the output signal with the small Gaussian filter,

also the height of the peak was slightly increased.

Thus, in the multiscale retinex model,7–9 the results for

Gaussian filters with various scales are averaged with differ-

ent weights using the following computation:

Oiðx; yÞ ¼
XN

n¼1

wn log Iiðx; yÞ � log Fnðx; yÞ � Iiðx; yÞf gf g;

(7)

Fnðx; yÞ ¼ Ke�ðx
2þy2Þ=r2

n and

ð ð
Fnðx; yÞdxdy ¼ 1; (8)

where wn represents the weight of the nth scale.

Figure 4 shows the multiscale retinex process. Gener-

ally, three Gaussian filters, small, middle, and large scale,

are used to estimate the local illuminant. Images are

obtained for each scale using a single-scale retinex and then

averaged using a weighting factor.

Figure 5 shows the resulting images for each single-

scale retinex in the multiscale retinex model. The result of

the single retinex with the small-scale Gaussian filter only

included detail with graying out, while the result of the sin-

gle retinex with the large-scale Gaussian filter included

more chromaticity information. Thus, local contrast and

color rendition can be simultaneously obtained based on a

weighted summation of these results.

The multiscale retinex algorithm is very efficient for

improving the detail and local contrast of shadow regions

Figure 1. Images resulting from single-scale retinex for (a) r ¼30, (b) r ¼60, and (c) r ¼90.

Figure 2. One-dimensional single-scaled retinex process with Gaussian filter: (a) input signal, (b) Gaussian fil-
ter, (c) filtered signal, and (d) output signal.

Figure 3. (a) Two Gaussian filters and (b) output signals by Gaussian fil-
ters and their average.
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in an image based on dividing the image by its local aver-

aged image, regarded as the local illuminant, using a

Gaussian filter. The result with a single-scale retinex

algorithm depends on the scale of the Gaussian filter. The

smaller the Gaussian filter, the better the local contrast, yet

this also produces halo artifacts. Thus, to reduce these

artifacts, the multiscale retinex algorithm uses a weighted

sum of several resulting images from a single retinex with

various sizes of Gaussian filter. However, selecting the

appropriate Gaussian filter set and related weights remains a

challenge. Even when using just two Gaussian filters, a halo

artifact can be caused by the combination of the filters and

their weights. The multiscale retinex process is such that, for

the same input image, the resulting images for a single-scale

retinex with different Gaussian filters are added in a pixel-

by-pixel fashion. Each resulting image is then multiplied by

different weights, causing a graying-out of the result. Plus,

reducing the scale of the Gaussian filter and increasing the

weight of the small Gaussian filter to enhance the local con-

trast can induce desaturation in the resulting image.

Visual Contrast Measure

Various sizes of Gaussian filter are used to estimate the illumi-

nant component in the multiscale retinex model. Figure 6

shows the estimated illuminant and resulting image when

using the single-scale retinex model with various sizes of

Gaussian filter. In Fig. 6(b), the estimated illuminant compo-

nent with a small Gaussian filter includes information on the

Figure 4. Multiscaled retinex process.

Figure 5. (a) Original image, images resulting from single-scaled retinex
with (b) small scale (r¼5), (c) middle scale (r¼20), (d) large scale
(r¼240), and (e) images resulting from multiscaled retinex process with
small, middle, and large scale.
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shape of the object, whereas there is no information on the

object included in the estimated illuminant component with a

large Gaussian filter. When using the single-scale retinex

model with a smaller Gaussian filter, the resulting image only

includes details of the scene without any color information, as

shown in Fig. 6(c). Meanwhile, when using a larger Gaussian

filter, the contrast of the resulting image is only slightly

enhanced, however, the color information is preserved from

the input image, as shown in Fig. 6(a). As such, since these

resulting images are summed with different weights in the

multiscale retinex model, the small Gaussian filter serves to

improve the local contrast, while the large Gaussian filter sta-

bilizes the contrast enhancement by reducing the halo artifacts

and preserving the color information.

Therefore, the size and weight of the large Gaussian fil-

ter are determined based on considering the local distribu-

tion of the contrast and brightness in the input image. A

visual contrast measure (VCM) and halo artifact measure

are then used to evaluate the resulting images from the

Gaussian filters and weights.

The general idea behind the VCM is that a good visual

representation usually combines a high regional visual

lightness and contrast.7 Figure 7 shows the division of an

input image based on the human visual system. The best

viewing angle for good color perception with the human

visual system is 2 �.11 For example, in the case of a general

monitor with a 1680� 1050 pixel resolution, it is converted

into 50 pixels based on a standard viewing distance of 45

cm. Thus, to compute the regional parameters, the input

image is divided into nonoverlapping 50� 50 pixel blocks.

As the regional scale is sufficiently granular to capture

the visual sense of the regional brightness and contrast, the

regional parameters can be used to measure the brightness

and contrast. Thus, the overall lightness is measured using

the image mean, which is also the ensemble measure for

the regional lightness. The VCM is then computed by tak-

ing the mean of the regional standard deviations, thereby

providing a gross measure of the regional contrast varia-

tions as follows:

V ¼ 1

N

XN

k¼1

mksk; (9)

where k is the index of the blocks, N is the number of

blocks, mk is the mean of the k0 th block, and sk is the

standard deviation of the k0 th block.

Halo Artifact Measure

As halo artifacts are one of the effects of using a Gaussian fil-

ter, three Gaussian filters are used in the multiscale retinex

model to reduce the halo artifacts. Halo artifacts depend on

the size and weight of the filter, i.e., halo artifacts appear

when using a small Gaussian filter and when applying a high

weight to a small Gaussian filter. Hence, to evaluate the halo

Figure 6. Contrast enhancement by various Gaussian filters: (a) input image, (b) estimated illuminant compo-
nents, and (c) images resulting from single-scaled retinex.

Figure 7. Division of input image based on viewing angle of human vis-
ual system.
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artifacts, Macbeth color checker images were used, as shown

in Figure 8. Halo artifacts occur between the center of a uni-

form area and the edge of that area. The Macbeth color

checker also exhibits this distribution, a uniform area inside

a patch and a black edge between patches. The halo artifacts

are evaluated based on the maximum color difference

between each color of the pixels in a patch and the averaged

color in CIELAB standard color space. Assuming that

the color space is standard sRGB color space, the RGB values

are converted into CIEXYZ stimulus space using a 3� 3 con-

version matrix for standard sRGB color space as follows:11

X

Y

Z

2
4

3
5 ¼ 0:4124 0:3576 0:1805

0:2126 0:7152 0:0722

0:0193 0:1192 0:9505

2
4

3
5 R

G

B

2
4

3
5 (10)

The XYZ values are then reconverted to CIELAB values as

follows:

L� ¼ 116 f
Y

Yn

� �
� 16

116

� �

a� ¼ 500 f
X

Xn

� �
� f

Y

Yn

� �� �

b� ¼ 200 f
Y

Yn

� �
� f

Z

Zn

� �� � (11)

where f ðsÞ
¼ s1=3 s > 0:008856

¼ 7:787 s þ 16=116 otherwise;

(

where Xn, Yn, and Zn represent the CIEXYZ values for the

D65 illuminant. To evaluate the halo artifacts, the maxi-

mum color difference corresponding to each patch in the

Macbeth color checker is computed as follows:

hk ¼ max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�m;k � L�k ðx; yÞÞ

2 þ ða�m;k � a�k ðx; yÞÞ
2 þ ðb�m;k � b�k ðx; yÞÞ

2
q� �

;

(12)

where k is the index of the patch, L�m;k , a�m;k , and b�m;k repre-

sent the mean of the color in the k’th patch, and L�kðx; yÞ,
a�kðx; yÞ, and b�kðx; yÞ represent the color at the (x,y) posi-

tion in the k’th patch. Finally, the overall halo artifact mea-

sure is obtained based on the averaged maximum color

differences for each patch as follows:

H ¼ 1

N

XN

k¼1

hk; (13)

where N indicates the number of patches in the Macbeth

color checker image. As human vision cannot perceive a

color difference under 3 in CIELAB color space,12 the only

Gaussian filters and weights considered had an averaged

maximum color difference under 3.

Relative Local Contrast Measure

If the sizes of the Gaussian filters in the multiscale retinex

model are selected only to enhance the local contrast and

reduce the halo artifacts without considering the luminance

and contrast distribution of the input image, this can over

enhance the contrast, resulting in an unnatural image.

Namely, the increase of the local contrast should be con-

trolled according to the input image to reduce unnecessary

contrast enhancement. If the input image is dark overall and

the details of the objects in the dark region are not distin-

guished, the local contrast needs to be increased. However,

when an image is captured under a relatively uniform illumi-

nant, the local contrast should only be slightly increased.

Thus, to determine the condition of the input image,

a normalized standard deviation of the local luminance

based on the average luminance of the image is used as

follows:

P ¼ 1� 1

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k¼1

mk �mð Þ2
vuut ; (14)

where k is the index of divided images, mk represents aver-

age luminance of the k’th subimage, N is the number of

subimages, and �m indicates the average luminance of the

input image. The normalized standard deviation of the

local luminance is then reversed by subtracting from 1.

Therefore, in the case of a low luminance and a high differ-

ence for the local luminance, the normalized standard devi-

ation of the local luminance, P, is close to 0, and large in

the opposite case.

Figure 9 shows the computed normalized standard

deviation of the local luminance for six input images.

When increasing the number of subimages, the local con-

trast and brightness of the image was increased, thereby

reducing the necessity of contrast enhancement. Similarly,

the computed P value also increased. Thus, in the multi-

scale retinex model, the P value is used as the weight for

the large Gaussian filter to control the contrast enhance-

ment. As such, if the standard deviation of the local lumi-

nance is high, the weight of the large Gaussian filter is

Figure 8. Macbeth color checker image for evaluation of halo artifacts.
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increased to reduce the local contrast enhancement, and

vice versa in the opposite case.

Determination of Number of Gaussian Filters Used in

Multiscale Retinex

Before discussing the weights and size of the Gaussian filters,

the number of Gaussian filters used in the multiscale retinex

model was determined. Figure 10 shows the test images used to

investigate the image changes when using a multiscale retinex

with various number, size, and weight combinations of Gaus-

sian filters. Using these ten test images, the VCM value was

computed for the resulting images when varying the Gaussian

filter combination. In Figure 11(a), when using two Gaussian

filters, the VCM value slowly decreased when increasing the size

of the small Gaussian filter. In Fig. 11(b), when using three

Gaussian filters, the overall VCM values were higher than the

VCM values in Fig. 11(a), plus the variation when changing the

combination of Gaussian filters was also larger. In Fig. 11(c),

when using four Gaussian filters, the VCM value was similar to

that in Fig. 11(b), yet the variation was smaller. Finally, in Fig.

11(d), when using five Gaussian filters, the variation was

smaller than that when using four Gaussian filters.

Figure 12 shows the maximum VCM for the ten test

images according to the number of Gaussian filters. The

case of two Gaussian filters produced the lowest VCM val-

ues, while the case of three Gaussian filters produced the

highest VCM values. Therefore, even though the variation

of the VCM with three Gaussian filters was larger than the

variation with four and five Gaussian filters, three Gaussian

filters are used for the proposed method, as the computa-

tional cost of additional Gaussian filters involves an unrea-

sonable processing time.

Size Constraints for Gaussian Filters Used in Multiscale

Retinex

Figure 13 shows the VCM evaluation results for the test

images when varying the size of the small Gaussian filter.

The size of the Gaussian filter is normalized according to

the size of the input image. When using a Gaussian filter

smaller than about 0.2, the VCM changed sharply, however,

when using a Gaussian filter larger than 0.5, the VCM

gradually converged to a specific value. Thus, the small

Gaussian filter needed to be smaller than 0.2 to enhance the

contrast.

Meanwhile, Figure 14 shows the variation of the VCM

according to the size of the large Gaussian filter when using

the multiscale retinex model with three Gaussian filters.

For several combinations of small and middle Gaussian fil-

ters, the variation of the VCM according to the size of the

large Gaussian filter was only slight. Thus, when the origi-

nal image only requires minimal contrast enhancement,

determining the size and weight of the large Gaussian filter

is more related to reducing the halo artifacts and maintain-

ing the color and contrast of the original image, rather than

enhancing the contrast.

Figure 15 shows the averaged maximum color differ-

ences for the single-scale retinex model when varying the

size of the Gaussian filter. The color difference was found

to be inversely proportional to the halo artifact measure.

When using a Gaussian filter smaller than 0.3 compared

to the size of the input image, the color difference was

more than 3, resulting in halo artifacts. In contrast, when

using a Gaussian filter larger than 0.5, the color difference

was smaller than 1 and converged to a minimum value

over 0.8. Therefore, when considering the VCM and halo

artifacts, the size of the large Gaussian filter needs to be

larger than 0.8, while the size of the middle Gaussian filter

needs to be constrained under 0.2 when considering

the VCM.

Weight Constraints for Gaussian Filters Used in

Multiscale Retinex

When determining the weight of the large Gaussian filter,

halo artifacts also need to be considered, as a large Gaussian

filter can play a significant role in reducing the halo arti-

facts with the multiscale retinex model. Figure 16 shows the

averaged maximum color difference for the patches in a

Macbeth color checker image as a measure of the halo arti-

facts. When the weight of the large Gaussian filter was

lower than 0.5, the color difference was more than 3, result-

ing in halo artifacts. Therefore, the weight of the large

Gaussian filter needs to be higher than the weights of the

other two. In addition, the previously mentioned local con-

trast measure should be also considered to reduce unneces-

sary contrast enhancement.

Consequently, when using the multiscale retinex

model with two Gaussian filters, the weight of the large

Gaussian filter needs to be higher than that of the small

Gaussian filter. Hence, in order to reduce the halo artifacts,

the weight is limited to a P value ranging from 0.5 to 1 as

follows:

wL ¼
P

2
þ 0:5: (15)

Figure 9. Normalized standard deviation of local luminance by average
luminance.
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When using the multiscale retinex model with n Gaussian

filters, the limitation becomes as follows:

wL ¼
ðn� 1ÞP þ 1

n
; (16)

where n indicates the number of Gaussian filters used by

the multiscale retinex model.

As a result, the size of the large Gaussian filter needs to

be higher than 0.8 to reduce the halo artifacts and preserve

the color information of the input image. In addition, the

weight of the large Gaussian filter is determined according

to the local luminance distribution of the input image.

Meanwhile, the sizes of the other filters and their respective

weights are determined based on the VCM and halo arti-

facts by changing the combination of sizes and weights.

Thus, the VCM values were computed for the resulting

images when using various Gaussian filter combinations

with the multiscale retinex model. Among the combina-

tions with a color difference under 3, the combination pro-

ducing the largest VCM was then selected.

Selecting Size and Weight Combination of Gaussian

Filters Used in Multiscale Retinex

To eliminate the halo artifacts related to each size and

weight combination of Gaussian filters, the color differ-

ence was computed using a Macbeth color checker image.

First, the weights were sampled based on an interval of

0.1. As regards the weight combinations, a weight of more

than 0.3 was always used for the large size filter to reduce

the halo artifacts, while the weights for the small and mid-

dle size filters were never the same. As a result, nine

weight combinations were considered: W1¼(0.333, 0.333,

0.333), W2¼(0.1, 0.4, 0.5), W3¼(0.4, 0.1, 0.5), W4¼(0.2,

0.3, 0.5), W5¼(0.3, 0.2, 0.5), W6¼(0.1, 0.3, 0.6),

W7¼(0.3, 0.1, 0.6), W8¼(0.1, 0.2, 0.7), and W9¼(0.2, 0.1,

Figure 10. Test images for evaluation using VCM (a) flower, (b) mansion, (c) statue, (d) street, (e) blue car, (f)
cabin, (g) cave, (h) lift, (i) road, and (j) red car.

Jang et al.: Local contrast enhancement based on adaptive multiscale retinex using intensity distribution of input image

J. Imaging Sci. Technol. Jul.-Aug. 2011040502-8



0.7), where W1 is the weight combination proposed by

Jobson.7

Figure 17 shows the averaged maximum color differ-

ence for each weight combination. The W1 and W2 combi-

nations produced an averaged maximum color difference

over 3. As the weight of the large Gaussian filter became

higher, the averaged maximum color difference became

lower. Thus, only those combinations with a color differ-

ence under 3 were initially selected to reduce the halo arti-

facts. When varying the sizes and weights of the Gaussian

filters under the previously mentioned constraints, the

VCMs were then computed to find the optimized parame-

ter set. Finally, the parameter set related to the maximum

VCM value was selected.

Chroma Compensation

The saturation of the resulting image is lower than that of

the input image, as the resulting image from a single retinex

using a small-scale Gaussian filter has a very low saturation.

A method for reproducing the chroma and lightness in an

enhanced image was recently proposed,7,9 where the color

ratios between adjacent pixels are preserved to reproduce

more original-like images. However, while this approach

may be the best solution for the problem of color represen-

tation generated in an enhanced or mapped image, as pre-

serving the ratio minimizes the color changes resulting

from clipping or compression, this process is very

Figure 11. Variation of VCM by the number of Gaussian filters: (a) two Gaussian filters, (b) three Gaussian
filters, (c) four Gaussian filters, and (d) five Gaussian filters.

Figure 12. Maximum VCM by the number of Gaussian filter.
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complicated and has a high computational cost, making it

hard to apply real images.

Therefore, chroma compensation is proposed using

the relative chroma ratio of the input image based on the

standard sRGB color gamut in CIELAB color space. The

chroma value is adjusted to reduce the difference between

the chroma ratio of the input image and resulting image

using the proposed multiscale retinex model.

As standard sRGB color space is generally used as the

image color space, the sRGB color space is converted into

CIELAB color space using Eqs. (10) and (11). Since L* rep-

resents the lightness, the chroma and hue can be computed

as follows:

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 þ b�2
p

and H� ¼ tan�1 b�

a�

� �
; (17)

where C* is the chroma and H* is the hue in CIELAB color

space.11 Thus, all the colors in sRGB color space are repre-

sented in CIELAB color space, as shown in Figure 18. The

sRGB color gamut means the boundary of sRGB colors in

CIELAB color space. Thus, the relative chroma ratio can be

computed as follows:

pðx; yÞ ¼ Cðx; yÞ=CL;max; (18)

where CL,max represents the maximum chroma value in the

sRGB color gamut corresponding to the lightness of

the chroma, C, at position (x,y) in the same hue plane, i.e.,

the chroma value is normalized using the maximum value

from the sRGB color gamut in CIELAB color space.

The saturation of the resulting image from a multi-

scale retinex is also lower than the saturation of the input

image due to the averaging of the resulting images from a

single-scale retinex. If the lightness of a natural scene is

increased, the saturation of the natural scene is also

increased simultaneously. Plus, since enhancing the con-

trast increases the lightness in dark regions in an image,

the chroma should also be increased according to the

increased lightness. However, correcting the chroma value

by a simple gain can cause an unnatural color rendition

due to oversaturation.

Figure 19 shows the proposed chroma compensation

process. First, the maximum chroma of the sRGB color

Figure 13. Computed VCM values for test images, varying scale of
Gaussian filter.

Figure 14. VCM by varying scale of large Gaussian filter.

Figure 15. Averaged maximum color difference for images resulting from
single-scaled retinex model, varying scale of Gaussian filter.

Figure 16. Halo artifacts for varying the weight of the large Gaussian
filter.
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Figure 17. Averaged maximum color difference for combination of weights and Gaussian filters (a) W1, W2,
and W3, (b) W4 and W5, (c) W6 and W7, (d) W8 and W9.

Figure 18. sRGB color gamut in CIELAB color space. Figure 19. Chroma compensation.
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gamut is obtained according to the lightness and chroma of

the input image in the same hue plane. The chroma of the

resulting image from the proposed multiscale retinex is

then corrected by preserving the relative chroma ratio of

the input image as follows:

C 0oðx; yÞ ¼
CLo ;maxðx; yÞ
CLi ;maxðx; yÞ

� Ciðx; yÞ; (19)

where CLo,max represents the maximum chroma value cor-

responding to the lightness, Lo, and CLi,max represents the

maximum chroma value corresponding to the lightness, Li.

EXPERIMENTS AND EVALUATION
Figures 20, 21, and 22 show the original and resulting

images when using the conventional multiscale retinex with

the parameter set proposed by Wang,4 the conventional

multiscale retinex with the parameter set proposed by

Rahman,7 and the proposed method. In the original image,

Fig. 20(a), with the exception of the window and part of

the room, no detail can be distinguished. In contrast, in

Fig. 20(b), the image resulting from Wang’s method, all the

details can be recognized, yet noise appears on the log wall

due to over-enhancement of the contrast. Also, the color of

the curtain and bed is faded with respect to the original

image. Similarly, in Fig. 20(c), the image resulting from

Rahman’s method, the saturation is a little better than that

in Fig. 20(b), yet noise is still a problem. In Fig. 20(d), the

image resulting from the proposed method, the color is

more similar to that in the original image, the enhanced

local contrast is maintained, and there is no insurgence of

noise.

In Fig. 21, the color distribution is concentrated on the

color beige and no noise appears due to the wide dynamic

range. Thus, in Figs. 21(b) and 21(c), the color of the living

room is better represented, yet halo artifacts appear on the

wall above the door. However, in Fig. 21(d), there are no

halo artifacts, although the local contrast enhancement is

less effective. Moreover, the colors of the veranda floor

(bluish) and lamp (yellowish) are better preserved.

In Fig. 22, the interior is darker than the outdoors and

is quite noisy. Thus, in Figs. 22(b) and 22(c), the noise and

halo artifacts are extremely intrusive, although the inner

Figure 20. (a) Bedroom image, and images resulting from (b) conventional multiscaled retinex, (c) proposed
color correction, and (d) proposed color correction and chroma compensation.

Figure 21. (a) Veranda image, and images resulting from (b) conventional multiscaled retinex, (c) proposed
color correction, and (d) proposed color correction and chroma compensation.

Figure 22. (a) Interior image, and images resulting from (b) conventional multiscaled retinex, (c) proposed
color correction, and (d) proposed color correction and chroma compensation.
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objects can be recognized. Also, the colors of the landscape

through the window are faded. However, in Fig. 22(d), the

colors are better recovered and the noise more controlled.

Furthermore, to evaluate the stability of the proposed

method as regards repeated performance, the multiscale

retinex model is repeatedly applied to an input image, and

Figures 23 and 24 show the images resulting when using

the conventional and proposed methods, respectively. Figs.

23(b) and 23(e) show the images resulting when applying

the conventional and proposed methods once. While the

enhanced local contrasts are similar, halo artifacts appear

on the door and lamp around in Fig. 23(b), whereas the

saturation in Fig. 23(e) is more improved. However, when

the conventional method is repeatedly applied, as shown in

Figs. 23(c) and 23(d), the colors of the resulting images are

faded and distorted. Yet, repetitive application of the pro-

posed method does not change the color or contrast in the

resulting images, as shown in Figs. 23(f) and 23(g).

Likewise, in Fig. 24, the images resulting when using the

conventional method have a lower saturation than with the

proposed method. In the case of repetitive application, the

images resulting with the conventional method do not pre-

serve the contrast and color, whereas the images resulting

with the proposed method are unchanged.

In addition, the automatically selected parameter sets and

ones hand-picked by users were compared for a qualitative

evaluation. As the total number of parameters is six, control-

ling the algorithm manually is an arduous task. Thus, to make

the process easier for the testers, the size of the large Gaussian

filter was fixed at 0.8, while the range of the small and middle

Figure 23. (a) Window image, and images resulting from application of conventional multiscaled retinex model
(b) once, (c) twice, and (d) three times, and applying proposed method (e) once, (f) twice, and (g) three times.

Figure 24. (a) Palace image, and images resulting from application of conventional multiscaled retinex model
(b) once, (c) twice, and (d) three times, and from application of proposed method (e) once, (f) twice, and (g)
three times.
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Gaussian filters was sampled in 2-pixel steps from 0 to 0.2.

Plus, the weight sets were limited to (0.3, 0.2, 0.5), (0.3, 0.1,

0.6), and (0.2, 0.1, 0.7). Using these conditions and five test

images, ten test subjects were able to find suitable parameters

manually. For the selected two-parameter sets, the similarity

of the weights was computed based on the large Gaussian fil-

ter. If the parameter set was the same, the similarity was 1, if

the difference was 0.1, the similarity was 0.8, and if the differ-

ence was 0.2, the similarity was 0.6. In the same manner, the

similarity of the size parameters decreased from 1 in steps of

0.01. Thus, if the parameter sets were the same, the total simi-

larity was 2. Table I shows the similarity values for the ten test

subjects. Overall the similarity was close to 2, indicating that

the two-parameter sets selected by the proposed method and

the test subjects were similar.

CONCLUSIONS
The multiscale retinex algorithm improves the local con-

trast and image detail using the ratio of intensity for each

channel between the original image and the estimated illu-

minant component from Gaussian filtering. When com-

pared with conventional methods using a gamma curve or

histogram, the multiscale retinex algorithm produces good

color rendition, as it considers the character of the spatially

adaptive human visual system. However, its results are not

stable relative to the luminance distribution of the input

image. Thus, over-enhancement of the contrast and

unnatural saturation can be induced.

Thus, to resolve these problems, this article proposed

an adaptive multiscale retinex using Gaussian filters selected

according to the intensity distribution of the input image.

First, to determine the sizes and weights of the Gaussian

filter set used in the multiscale retinex model, a VCM and

the maximum color difference of the color patches in the

Macbeth color checker are used. The visual contrast mea-

sure is obtained based on the product of the local standard

deviation and the locally averaged luminance of an image.

Meanwhile, to evaluate the generation of halo artifacts when

large uniform regions abut to form a high-contrast edge,

the maximum color difference between each color of the

pixels in a patch in the Macbeth color checker and the aver-

aged color in CIELAB standard color space is used. More-

over, to adapt the results to the input image, the standard

deviation of the local luminance in the input image is used

as the weight for the Gaussian filters. Considering the

impact of the color difference on the generation of halo arti-

facts, parameters for the sizes and weights of Gaussian filters

producing a higher visual contrast measure are determined.

Finally, to reduce the induced graying-out, the chroma

of the resulting image from the modified multiscale retinex

model is compensated by preserving the chroma ratio of the

input image based on the maximum chroma values of stand-

ard sRGB color space in the lightness–chroma plane. Experi-

mental results confirm that the proposed method is able to

improve the local contrast and image details without any

color distortion, while also restoring the saturation using a

chroma compensation process. Future studies will investigate

a method for enhancing the local contrast based on the light-

ness and chroma adaptation of the human visual system.
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