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The Influence of Shape on the Perception of Material Reflectance

Peter Vangorp∗ Jurgen Laurijssen† Philip Dutré‡

Department of Computer Science

Katholieke Universiteit Leuven

Figure 1: The tesselated spheres in the left image are rendered with two different types of a blue plastic BRDF, yet they are perceived as
made from the same material. The objects in the right image are rendered with an identical blue plastic BRDF, yet their appearance is very
different.

Abstract

Visual observation is our principal source of information in deter-
mining the nature of objects, including shape, material or rough-
ness. The physiological and cognitive processes that resolve visual
input into an estimate of the material of an object are influenced by
the illumination and the shape of the object. This affects our abil-
ity to select materials by observing them on a point-lit sphere, as is
common in current 3D modeling applications.

In this paper we present an exploratory psychophysical experiment
to study various influences on material discrimination in a realis-
tic setting. The resulting data set is analyzed using a wide range
of statistical techniques. Analysis of variance is used to estimate
the magnitude of the influence of geometry, and fitted psychome-
tric functions produce significantly diverse material discrimination
thresholds across different shapes and materials.

Suggested improvements to traditional material pickers include di-
rect visualization on the target object, environment illumination,
and the use of discrimination thresholds as a step size for parameter
adjustments.
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1 Introduction

When people are confronted with a new object for the first time,
the initial impression of its nature is primarily estimated from vi-
sual input. Visual material perception is one of the most significant
clues for determining properties of an object, such as what material
it is made of, how smooth it would be to the touch, or how heavy it
could be. These observations are based on lifelong experience, built
up from childhood by actually confirming visual impressions with
other senses. When confidence in the visual input grows, mate-
rial perception becomes an increasingly cognitive process [Palmer
1975]. In this paper we present an exploratory study of the effects
of shape on the perception of materials.

Just as every image editing program needs a color picker, every
3D modeling application depends on a good material picker. In-
deed, realistic image synthesis not only depends on accurate light
transport simulations, but also on the ability to model virtual scenes
accurately. One of the challenging tasks in 3D modeling is assign-
ing an appropriate material description to every object in the scene.
Until now, most material pickers offer a library of predefined ma-
terials, combined with basic controls to adjust the parameters of an
underlying model. However, most popular material models rely on
non-intuitive, non-linear and interdependent parameters that require
a lot of experience and knowledge about the underlying model in
order to reach some desired effect. Section 2 includes a discussion
of recent advances in perceptually uniform reparameterizations that
could solve most of these problems.

Visual feedback from many current material pickers is limited to a
point-lit sphere, mostly for practical reasons, such as ease of render-
ing or identifiable highlights. However, a sphere is not necessarily



the optimal shape from a perceptual point of view. We will demon-
strate that the perception of materials is strongly influenced by the
shape of the object, and that a sphere is not always a good choice to
pre-visualize material selections.

In general, a material model defines the appearance of a surface,
including spatially varying texture, angular variation, and subsur-
face scattering properties. We will limit the scope of this paper
to spatially uniform surface properties, excluding subsurface ef-
fects. These are best described by the bidirectional reflectance-
distribution function (BRDF) [Nicodemus et al. 1977], and capture
effects such as glossiness and diffuse color.

2 Related Work

Visual constancy. Early work in visual perception has focused
mainly on the physiological and neurological characteristics of the
human visual system related to contrast and color. Examples in-
clude research into different aspects of color constancy: the color
and lightness of an object appear remarkably constant under sub-
stantial changes in illumination (see [Brainard 2004] for a recent
overview). Although limits of color constancy have been discov-
ered [Foster 2003; Brainard and Wandell 1991], it remains one of
the strongest factors in the visual perception of materials. Simi-
lar invariance of perceived glossiness under changing illumination,
termed gloss constancy, was demonstrated by Obein et al. [2004].
While it is often assumed that color constancy under changing sur-
face glossiness also holds [ASTM 1999; Aida 1997], this is cer-
tainly not always the case. Xiao and Brainard [2006] demonstrated
that color appearance is indeed affected slightly by glossiness.

Material perception. Most of the work in this area has examined
materials presented on a single shape, usually a sphere. This choice
is partly justified because a sphere presents all possible surface ori-
entations towards the viewer, without preference. It can therefore
give a good idea of the full range of the reflectance function. The
choice is also motivated by the sphere’s ease of use in modeling
and interactive rendering. Its convexity eliminates the need for self-
shadowing and interreflection.

A notable exception is the work of Nishida and Shinya [1998]. They
discovered that observers had great difficulty matching Phong-
shaded height fields of different amplitudes and frequencies, thus
showing that gloss constancy is not guaranteed when varying the
geometry. They also relate observers’ performance to information
in the luminance histogram of the stimulus images.

The reflectance matching experiments of Fleming et al. [2003] indi-
cate that people can judge material characteristics more accurately
under natural environment illumination than under artificial point
light sources. It is therefore probable that the human visual system
uses implicit knowledge of the statistics of real-world illumination
to aid in reflectance perception.

Perceptual material parameterization. Pellacini et al. [2000]
examined the perceptual space of glossy materials representable by
the isotropic Ward reflectance model [Ward 1992]. They showed
that there are 2 perceptual gloss dimensions present in this space,
namely contrast gloss and distinctness-of-image gloss. These di-
mensions are used as the basis for a perceptually uniform reparam-
eterization of the Ward reflectance model. Additionally, in Ferw-
erda et al. [2001] the thresholds for perceiving differences in the
perceptual gloss space are derived.

Ngan et al. [2006] suggested an L2 metric on images of spheres
rendered with different BRDFs under environment illumination,
as an alternative model for the perception of distinctness-of-image
gloss. The use of image-based metrics can certainly be justified

from a perceptual perspective: people perceive a material by look-
ing at (images of) objects made out of the material, rather than con-
sciously considering a mental model of an abstract 4D reflectance
function.

The ASTM gloss appearance standards [ASTM 1999] provide
widely-used definitions and measurement devices for different
kinds of gloss. Westlund and Meyer [2001] simulated these mea-
surement devices in a virtual light meter to derive the specular and
aspecular gloss (or haze) scales corresponding to the roughness pa-
rameter range of several analytical reflectance models.

Matusik et al. [2003b] sampled the space of all isotropic surface
materials by measuring over 100 BRDFs. They found that this
space can be spanned by a 15-dimensional non-linear manifold.
The dimensions correspond to intuitive traits, and interpolation on
the manifold is guaranteed to synthesize novel physically plausible
materials [Matusik et al. 2003a].

Material editing. Colbert et al. [2006] present a BRDF editor
based on a multi-lobe extension of the Ward reflectance model. The
editor allows an artist to paint and manipulate highlights on a point-
lit sphere, chosen to show clearly distinct highlights. The resulting
material is at the same time rendered on a more complex model
under unshadowed environment map illumination to see if the ma-
terial gives the desired result on the target shape.

The real-time BRDF editor of Ben-Artzi et al. [2006] allows the
user to visualize arbitrary reflectance functions directly on the tar-
get shape, under arbitrary illumination. The viewpoint-dependent
precomputation of direct lighting produces high-quality shadows
and gloss. Intuitive controls are offered to reshape the curves of
different reflectance functions.

The innovative BRDF navigation technique by Ngan et al. [2006]
uses pre-rendered images of spheres under environment map illu-
mination. They show the currently selected BRDF together with
several variations at a specified perceptually uniform step size. This
allows the user to navigate along a number of intuitive dimensions,
even across different underlying analytical models. The choice of
the reflectance model is made for the user, based on the desired look
of the material.

3 Overview

The topic of this paper is the study of the perception of materi-
als under different conditions. The main point of interest can be
described as the study of material constancy under changing geom-
etry. In Section 4 we present an exploratory psychophysical exper-
iment to investigate various influences on material discrimination.
Participants were shown a series of images, displaying two virtual
objects in a realistic setting, and were asked whether the objects
looked as if they were made of the same material. The resulting
data set is analyzed using a wide range of statistical techniques in
Section 5. Conclusions are drawn about meaningful characteris-
tics like the magnitude of the influence of geometry, and material
discrimination thresholds across different shapes and materials.

4 Perceptual Experiment

4.1 Stimulus images

Each stimulus image is a combination of 4 components:

1. The scene provides a background and illumination environ-
ment, in which objects of interest are placed.



2. Two objects of identical or different shapes are placed in the
scene, e.g. a sphere and a bunny.

3. At least one of the objects is rendered with an original base
material, e.g. blue plastic.

4. The second object is rendered either with the same original
base material or a small variation thereof.

Fleming et al. [2003] suggested using natural environment illumi-
nation to improve material discrimination. In addition, we decided
to place objects in a real-world scene instead of rendering them
in front of the blurry environment map used as their background.
Therefore, standard augmented reality techniques [Debevec 1998]
were used to achieve the required level of realism. These techniques
combine a background photograph of a scene and a foreground ren-
dering of a local scene with virtual objects. The virtual objects are
rendered under environment illumination, a distant light source ap-
proximation of the actual lighting conditions in the photographed
scene. A standard path tracing implementation was used to ren-
der full global illumination effects, including soft shadows and in-
terreflections [Dutré et al. 2006]. The complete capturing, render-
ing and compositing pipeline was implemented using high dynamic
range values and images. The final images were tone-mapped using
the histogram adjustment method described by Ward Larson et al.
[1997]. This mix of image-based rendering and traditional global
illumination algorithms is currently the most feasible way to render
large sets of realistic-looking images. Moreover, people would be
able to tell the difference between a real scene and the clean and
sharp look of a pristine model [Longhurst et al. 2003].

Our decision to show two objects in a single stimulus image was
motivated by the following reasons:

1. Presenting one image containing both objects makes better
use of the center of gaze than two separate images, each show-
ing a single object. The objects can be close together in the
middle of the image while the surrounding area can provide
some context.

2. We also expect that combining both objects in a single image
will improve participant performance and experiment validity
by emulating a real-world scenario of material comparisons.

3. Finally, although the viewing direction might differ slightly
between the objects, this only becomes apparent when two
identical shapes are presented. The illumination is exactly
the same for every object in the scene because of the distant
illumination approximation, except for subtle interreflections
and shadowing between objects.

To fully utilize participants’ experience with real-world materials,
we chose to use the database of real isotropic materials measured
by Matusik et al. [2003b]. Ngan et al. [2005] provide the parame-
ters for a number of analytical reflectance models that best fit the
measured data, including the isotropic Ward BRDF model [Ward
1992]:

fr =
ρd

π
+

ρs

4πα2
√

cosθi cosθo

exp

(

− tan2 θh

α2

)

where ρd is the diffuse reflectance, ρs is the specular reflectance, α
is a surface roughness parameter, and θi, θo, and θh are the elevation
angles of the incident light direction, the outgoing light direction,
and the halfway vector, respectively.

The main reason for choosing the Ward model over tabulated mea-
surement data or other analytical models is because a perceptu-
ally meaningful reparameterization exists [Pellacini et al. 2000].
It can be used to generate perceptually uniform gloss variations

on the base materials. The dimensions of contrast gloss (c) and
distinctness-of-image gloss (d) are specified as independent trans-
formations of the parameters in the Ward model:

c = 3
√

ρs +ρd/2− 3
√

ρd/2 (1)

d =1.78(1−α) (2)

We chose to pick variations that deviate from a base material along
only one of these dimensions at a time (∆c or ∆d), so we do not
rely on the general Euclidean distance metric in {c,d}-space.1 A
deviation along either one of the uniform dimensions is denoted by
∆{c,d}. For the contrast gloss equation, the diffuse reflectance of
the base material is kept constant, because even small differences
would be detected immediately. Of the specular reflectance only the
lightness L is changed, because gloss chromaticity is an important
clue to detect metallic materials. In general, glossy non-metals pro-
duce white highlights, while the highlight color of metals is related
to their diffuse color.

The Ward model works well for glossy materials but it should not
be used with extreme parameter values. Any change in roughness α
will be lost when specular reflectance ρs approaches zero. In terms
of the perceptual reparameterization, if there is not enough contrast
gloss to form noticeable highlights, a distinct image certainly can-
not be reflected. At the other extreme, any change in specular re-
flectance ρs will lose its effect on gloss when roughness α exceeds
a certain level. In other words, when the reflected image becomes
too indistinct, the specular lobe acts as just another nearly-diffuse
term.

Our perceptual experiment is intended to explore the interesting
ranges for each variable factor in the stimuli. We selected a diverse
set for each category.

Scenes: attic, courtyard, library, tabletop
Illumination conditions ranged from a sunny outdoor courtyard
scene to an attic scene illuminated from a small window on a cloudy
day. Different camera positions were used, including varying ele-
vations of the camera above the ground plane and varying fields of
view (10◦–29◦ vertical).

Shapes: blob, buddha, bunny, car, cylinder, dragon, rounded
icosahedron, sphere, teapot, tesselated sphere, triceratops
A wide variety of shapes was selected based on many different
characteristics that might prove interesting, including complexity,
convexity, curvature, anisotropy of curvature, and presence of flat
surfaces. The rounded icosahedron has subtle beveled edges.

Base materials: acrylicblue, aluminium, chballgoldmetallic2,
copper, metallicblue, metallicsilver, nickel, nylon, paintlightred,
pearlpaint
A set of base materials was chosen from the database of Ma-
tusik et al. [2003b] and Ngan et al. [2005], well-distributed within
the working range of the Ward reflectance model and the {c,d}-
space. The selection includes metals, plastics and paints with vary-
ing colors and gloss.

Variations: original, ∆{c,d} = 0.05,0.10,0.15,0.20,0.25
Visual inspection of a small set of test images showed that the
threshold for noticing differences in materials was distributed
around ∆{c,d} = 0.10. In contrast, Ferwerda et al. [2001] found
thresholds as small as ∆{c,d} = 0.03. In Section 5 the cause of
this apparent difference is explained. Variations were chosen such
that materials remained within the working range of the reflectance
model.

A few of the resulting stimulus images are shown in Figure 2.

1Pellacini et al. [2000] introduced the scale factor 1.78 in the distance

metric. We include it in Equation 2 instead, yielding equivalent relations.



(a) (b) (c)

(d) (e) (f)

Figure 2: A selection of 6 example images, out of a total of 330 stimuli. (a) Library scene, dragon and buddha, both original light red paint.
(b) Attic scene, two copper teapots (which are slightly rescaled). The teapot on the right is rendered with less contrast gloss (∆c = 0.20).
(c) Library scene. The tesselated sphere is rendered with the original acrylic blue material and the cylinder is rendered with more contrast
gloss (∆c = 0.25). (d) Attic scene, car and rounded icosahedron, both nickel without variations. (e) Tabletop scene, blob and teapot, both
nylon without variations. (f) Courtyard scene, sphere and bunny, both aluminium without variations.

4.2 Procedure

Because of the large number of possible combinations, we used
a randomized experimental design, sampling the factorial space of
combinations in a well-distributed manner. Our complete set of 330
stimulus images can be partitioned into 4 groups (see Table 1).

shape material number of images

Group 1 identical identical 55
Group 2 different identical 165
Group 3 identical different 55
Group 4 different different 55

Table 1: Groups of stimuli in the experiment.

More images were created for group 2 (different shape, identical
materials) to obtain a better sampling of this space. This tests the
perception of identical materials on different geometry, which is of
most interest to us.

Participants were given written instructions before the experiment.
The question asked for each stimulus image was: “Are both objects
in the image made out of the same material?” This simple yes-or-
no question avoids too much variability between participants. The
instructions contained a few example images as a short training ses-
sion to clarify what is meant by the same material, e.g. some people
might call aluminium and nickel both metals, even though they see
an obvious difference between both materials. Also smooth and
brushed finishes should be judged as being different.

Each session consisted of 220 images: the complete groups 1, 3,
and 4, and a well-distributed sampling of 55 images from group 2.

Keeping the sessions balanced between all conditions was intended
to avoid bias, e.g. if a participant always selects “identical mate-
rials” as their default answer when they cannot decide with con-
fidence, then a significantly larger proportion of identical material
images in the session will artificially inflate their score.

The stimulus images were presented one at a time, in random or-
der, on a calibrated Iiyama Vision Master Pro 19” CRT monitor
[Brainard et al. 2002]. The experiment was performed in controlled
office lighting conditions, without influence from daylight. Each
image filled approximately half the screen area over a neutral gray
background. The screen was blanked to gray for a fraction of a
second between images.

Because of the large number of stimuli presented to each partici-
pant, lapses in concentration might occur. The instructions explic-
itly stated that participants were allowed to take a short break if they
grew tired. Most participants completed a session of 220 images in
under 30 minutes.

A total number of sixteen participants took part in the experiment:
6 computer graphics researchers and 10 persons who had no partic-
ular knowledge of computer graphics techniques. Analysis showed
that there was no difference between these two groups (see Sec-
tion 5). All participants were unpaid volunteers and had normal or
corrected-to-normal visual acuity and normal color vision.

5 Results and Analysis

There are two ways in which to interpret each single observation:

Assessment: Participants indicate whether they perceive the 2 ma-
terials shown in the image as either identical or different. For



quantitative analysis, we define assessment as the percentage
of “identical materials” answers.

Accuracy: Since we know which materials were used in each im-
age, we can derive the accuracy of their assessment as either
right or wrong. In other words, whether they answered the
question “Are both objects made out of the same material?”
correctly or not.

When a large number of factors is needed for a thorough ex-
ploratory experiment, different subsets of the resulting data are of-
ten suitable for many different data analysis techniques. In the fol-
lowing sections, we summarize the major trends and examine the
material discrimination threshold.

No significant differences between participants: Participants’
ages ranged between 22–56, with 10 out of 16 being in their twen-
ties. Different parts of the population with different levels of ex-
perience were represented: graphics researchers, people with vari-
ous computer science backgrounds, and casual computer users. No
differences were found between age groups, experience, gender or
race.

In informal debriefing after the session, it became apparent that
people without any experience in graphics lack the vocabulary to
describe materials. In some cases, they could not describe nor even
point at the differences they perceived.

5.1 Major trends in the complete data set

In this section, various hypotheses are tested with the Kruskal-
Wallis analysis of variance [Kruskal and Wallis 1952]. This non-
parametric test is an alternative for the well-known classical anal-
ysis of variance (ANOVA). Similarly, it verifies whether different
subsets of the data have the same probability distribution, e.g. a
statistic p < 0.05 denotes 95% certainty of a significant difference
between the subsets. Unlike classical ANOVA, Kruskal-Wallis does
not make the assumption of normally distributed data.

Difference in geometry diminishes accuracy: Participants’ av-
erage accuracy is rather high (79%) when observing materials on
identical geometry (groups 1 and 3), but it drops significantly
(p < 0.01) to only 62% on different geometry (groups 2 and 4).
See Table 2 for a summary of these results.

#images assessment
group shape per person accuracy identical

1 identical 55 87% 87%
2 different 55 71% 71%
3 identical 55 70% 30%
4 different 55 53% 47%

1 and 3 identical 110 79% 59%
2 and 4 different 110 62% 59%

Table 2: Average accuracy and assessment percentages, measured
over each group of stimulus images.

However, participants do not seem to adjust their decision criterion
between these subsets, because their average assessment remains
constant at 59% identical. This percentage can be explained in-
tuitively by the groups of images in each session. Exactly half of
the presented images contain identical materials, and approximately
10% contain a variation of ∆{c,d} = 0.05, which is rarely noticed.
In Section 5.2 the material discrimination threshold is analyzed fur-
ther.

Relative magnitude of influence from geometry and material
variations: Figure 3 shows a quantitative comparison between

the assessment and accuracy when only shapes differ (group 2)
and when only material variations differ (group 3 partitioned per
∆{c,d}). Reference levels are shown for identical shapes and iden-
tical materials (group 1). Figure 3(a) illustrates that, as can be
expected, the indirect influence of geometry on the assessment is
smaller than the influence of direct material variations, which are
the target of the experimental question. This difference is sig-
nificant for all variations except ∆{c,d} = 0.05 (p < 0.01). In
Figure 3(b), the influence of geometry crosses the level of mate-
rial variations at ∆{c,d} = 0.12, with a 95% confidence interval
of [0.04,0.20]. Intuitively, this means that material picking on an
unsuited shape can introduce errors equivalent to a difference of
∆{c,d} = 0.12 on the BRDF, which is a noticeable variation (see
Section 5.2).
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Figure 3: Comparisons of assessment and accuracy. The green line
is the reference value (identical shapes and materials, group 1). The
blue line has a lower value because of the influence of different ge-
ometry (group 2). The red line is the influence of material vari-
ations ∆{c,d}. (a) Geometry always has a smaller influence on
assessment than material variations. (b) The influence of different
geometry on accuracy is approximately the same as the influence of
material variations ∆{c,d} = 0.12.

Tesselated geometry diminishes accuracy: Another strong ef-
fect is participants’ inability to assess the appearance of a badly
tesselated mesh without shading normals. Accuracy for comparing
two tesselated spheres or icosahedra (despite their rounded edges)
is 69%, which is significantly lower than for other shapes (81%,
p < 0.01). Some participants appear to fall back to a default assess-
ment of identical materials in this case. The percentage identical
assessment for these shapes is higher than average (72% vs. 56%,
p < 0.01). When comparing tesselated shapes to different geome-
tries this effect is less pronounced.

The well-known fact that curvature captures highlights was math-
ematically confirmed and quantified by Durand et al. [2005] and
Ramamoorthi et al. [2007]. The facets of the tesselated sphere are
uncurved, so they fail to capture any recognizable highlight. In-
stead, the facets look like different diffuse colors.

Attic scene influences assessment and accuracy: In the attic
scene, participants’ accuracy drops from 72% to 66% (p < 0.01),
and identical assessment increases from 56% to 66% (p < 0.05).
Visual inspection of the images shows that the left object appears to
receive more light from the nearby window at the top left. However,
the objects are in fact rendered with exactly the same environment
illumination. The only actual differences occur when the left object
blocks the light and casts a faint shadow onto the right object, and
when the dark side of the left object is reflected in the light side of
the right object, creating contrast.
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Figure 4: Psychometric functions for the entire data set of images, for material variations ∆{c,d}, ∆c and ∆d respectively. Only images
showing identical shapes were considered, in order to eliminate any influence of geometry on the perception of material. The locations of γ ,
λ , and the threshold are indicated on the first graph.

5.2 Material discrimination threshold

Data from a psychophysical experiment relates observers’ re-
sponses to a physical variable of the stimuli. A psychometric func-
tion can be fitted to psychophysical data, so that useful character-
istics of the underlying phenomenon can be derived. The general
form of the psychometric function is [Wichmann and Hill 2001a,b]:

ψ (x;α ,β ,γ,λ ) = γ +(1− γ −λ )F (x;α ,β )

where x is the stimulus intensity, in this case the distance ∆{c,d}.
The guess rate γ is the response at zero stimulus intensity, and the
miss rate λ indicates how often observers fail to notice a large stim-
ulus intensity. The sigmoid function F can often be derived as
the cumulative distribution function of the underlying experimen-
tal process that generates the data. We use the Weibull distribution:

F (x;α ,β ) = 1− exp

(

−
( x

α

)β
)

, x ≥ 0

This distribution is often used to model phenomena that increase in
probability with increasing stimulus intensity [Weibull 1951]. One
can easily see that material discrimination is related to material dif-
ference in a similar way. The Weibull distribution is indeed widely
used to model discrimination and detection experiments.

In traditional, more focused experiments, only a single variable de-
termines the stimulus intensity and thereby the response, and γ and
λ are merely intended as small corrections for random guesses and
lapses in concentration, with typical values up to 5%. Our fitted
curves often have larger values of γ and λ , because the perceptual
difference of materials is not the only variable in our stimulus im-
ages. Like in any real-world scenario, many small factors, like the
surrounding scene or the specific viewpoint, can influence partici-
pants’ perception significantly.

The just noticeable difference or threshold, where observers start to
see the difference in the variations, is defined as:

ψ−1
p = α β

√

ln

(

1− γ −λ

1− p−λ

)

where p is the desired percentage (usually 50%) of observers that
notice the difference. The abruptness of the threshold is indicated
by the slope ψ ′

p at that point. Note that we deviate from the common

practice of using γ and λ only to improve fitting, and ignoring these
small values afterwards by defining the threshold as F−1

p instead,

which is independent of γ and λ .

The optimal shape for discrimination tasks would have low guess
and miss rates, an early threshold for discrimination of the smallest

differences, and a steep slope to minimize the dependence of the
threshold on the desired response level. The optimal shape for ma-
terial picking should only be as discriminative as the target shape.

The bootstrap method, a Monte Carlo resampling technique intro-
duced by Efron [1979], was used to estimate the variability and
confidence intervals of these statistics.

Main result: Figure 4 shows the resulting psychometric func-
tions for the complete dataset of identical shapes (groups 1 and 3),
as well as split into separate graphs for ∆c and ∆d variations. Sam-
ple points are indicated by dots. The size of each dot represents
the number of observations for that sample. The average material
discrimination threshold over all identical shapes and materials is
∆{c,d} = 0.08. The horizontal error bar indicates the 68% confi-
dence interval (one standard deviation) for the threshold. The sepa-
rate thresholds ∆c = 0.07 and ∆d = 0.10 do not differ significantly
from each other nor from the average. However, our thresholds are
larger than those found by Ferwerda et al. [2001], likely because of
the influence of geometry and color.

In Equation 2, the weighting factor of 1.78 is intended to create a
perceptually uniform {c,d}-space with a Euclidean distance met-
ric. Because only grayscale images were used in the experiment of
Pellacini et al. [2000], the reflectances ρ{d,s} in Equation 1 denote
only lightness (L), not a color. The apparent glossiness is assumed
to be independent of the surface chromaticity (a,b). However, our
results show that the psychometric functions for different base ma-
terials do not coincide exactly, suggesting that diffuse or specular
chromaticity does affect perceived gloss.

Base materials: Figure 6 shows the psychometric function for
the ∆{c,d}-variations of the materials. Significant differences in
threshold and slope are visible. Aluminium, the material that is
most similar visually and numerically to the materials of Ferw-

erda et al. [2001], confirms an early threshold of ψ−1
50% = 0.04 or

ψ−1
75% = 0.06. This is not significantly different from their reported

75%-threshold of 0.03. Figure 5 shows the different variations of
aluminium spheres.

Shapes: Figure 7 shows the psychometric function for each
shape. There are clearly significant differences between them. The
sphere has a very small guess rate γ and miss rate λ , but it also
has the latest threshold ∆{c,d} = 0.16, meaning it is not very well-
suited for material discrimination tasks. The teapot has similar γ
and λ , and an earlier threshold ∆{c,d}= 0.11, but the gradual slope
means a higher desired response level (more people should perceive
the difference) requires a much later threshold. A single optimal
shape does not exist in our selection, although the blob comes clos-
est. It has an early threshold ∆{c,d} = 0.03, a steep slope, and a



(a) ∆c

(b) ∆d

Figure 5: All variations of aluminium spheres, starting
from the original material on the left and with ∆{c,d} =
0.05,0.10,0.15,0.20,0.25 on the right. Compare each sphere to
the leftmost one to identify the discrimination threshold visually.

small miss rate λ . The worst shape is the tesselated sphere, as it
levels off at 50%, meaning participants performed no better than
chance. The cylinder and the dragon have fits and thresholds of
limited reliability because of insufficient data.

6 Conclusion

In this paper, we described an experiment in which participants had
to judge whether two virtual objects, rendered and illuminated in
a natural environment, were made out of the same material. The
stimulus images covered a wide range of shapes, materials and il-
lumination environments. Although our experiment is limited, we
feel that this type of study can provide valuable insights into the
relationship between the perception of shape and materials.

Statistical analysis shows that the accuracy of material perception is
influenced by the geometrical shape of the object rendered with that
particular material model. Resulting psychometric curves differ for
different shapes, but also for different types of materials.

Our results suggest that more thought should be given to the design
of material selection tools in modeling applications. The accepted
practice of using a sphere as a base model to visualize the selected
material parameters does not necessarily convey the appearance of
the selected material on the target shape correctly. We found that a
sphere is one of the least discriminating shapes w.r.t. the accuracy
of judging materials, thus suggesting that other shapes, possibly
dependent on the class of material or similar to the target shape,
might be better suited for this task.

Photorealistic rendering could be another future application area.
The allowable error threshold in images could be derived from the
psychometric curves for materials or objects. As long as the er-
rors remain lower than the discrimination threshold, no noticeable
change in the image will be detected at the cognitive level.

For the applications sketched above, optimally, one would like
to have psychometric curves available for each separate shape-
material combination. Our current experiment did not contain
enough images to derive such curves. However, we feel that future
experiments, focusing on the influence of a single effect or par-
ticular combination would be very interesting to investigate. Fu-
ture areas for testing could include the influence of texture maps
or transparency, as well as more focused studies for finding better
classifications of the shapes of objects.

Acknowledgements

The authors thank all the people who volunteered to participate in
our experiment. We would also like to acknowledge Wojciech Ma-
tusik and Addy Ngan for providing the measured and fitted real-
world materials, the Stanford 3D Scanning Repository for provid-
ing the buddha, bunny, and dragon models, RNA Studios for the car
model, and Martin Newell for the teapot model.

References

AIDA, T. 1997. Glossiness of colored papers and its application to
specular glossiness measuring instruments. Systems and Com-
puters in Japan 28, 1, 95–112.

ASTM. 1999. Annual Book of ASTM Standards, volume 06.01.
American Society for Testing and Materials.

BEN-ARTZI, A., OVERBECK, R., AND RAMAMOORTHI, R. 2006.
Real-time BRDF editing in complex lighting. ACM Transactions
on Graphics 25, 3, 945–954.

BRAINARD, D. H., AND WANDELL, B. A. 1991. A bilinear model
of the illuminant’s effect on color appearance. In Computational
Models of Visual Processing, M. S. Landy and J. A. Movshon,
Eds. MIT Press, 171–186.

BRAINARD, D. H., PELLI, D. G., AND ROBSON, T. 2002. Dis-
play characterization. In Encyclopedia of Imaging Science and
Technology, J. P. Hornak, Ed. Wiley, New York, 172–188.

BRAINARD, D. H. 2004. Color constancy. In The Visual Neu-
rosciences, L. M. Chalupa and J. S. Werner, Eds. MIT Press,
948–961.

COLBERT, M., PATTANAIK, S., AND KRIVANEK, J. 2006. BRDF-
Shop: Creating physically correct bidirectional reflectance dis-
tribution functions. IEEE Computer Graphics and Applications
26, 1, 30–36.

DEBEVEC, P. E. 1998. Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics with
global illumination and high dynamic range photography. In
Proceedings of ACM SIGGRAPH 98, ACM Press / ACM SIG-
GRAPH, New York, M. F. Cohen, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 189–198.

DURAND, F., HOLZSCHUCH, N., SOLER, C., CHAN, E., AND

SILLION, F. 2005. A frequency analysis of light transport. ACM
Transactions on Graphics 24, 3, 1115–1126.
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