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A Quantitative Perceptual Model for Tactile Roughness
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Fig. 1. Given an input surface geometry, our model computes the tactile roughness by computing skin deformation using elasticity simulations and sampling

the resulting compressive strain field. Our model enables the fabrication of tactile objects with specified roughnesses.

Everyone uses the sense of touch to explore the world, and roughness is one
of the most important qualities in tactile perception. Roughness is a ma-
jor identifier for judgments of material composition, comfort, and friction,
and it is tied closely to manual dexterity. The advent of high-resolution 3D
printing technology provides the ability to fabricate arbitrary 3D textures
with surface geometry that confers haptic properties. In this work, we ad-
dress the problem of mapping object geometry to tactile roughness. We
fabricate a set of carefully designed stimuli and use them in experiments
with human subjects to build a perceptual space for roughness. We then
match this space to a quantitative model obtained from strain fields de-
rived from elasticity simulations of the human skin contacting the texture
geometry, drawing from past research in neuroscience and psychophysics.
We demonstrate how this model can be applied to predict and alter surface
roughness, and we show several applications in the context of fabrication.
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1 INTRODUCTION

Tactile perception consists of four “coordinates”: roughness, com-
pliance, stickiness, and thermal sensitivity; of these, roughness is
known to be the most significant (Tiest 2010). Tactile roughness
is a major identifier for judging material composition; it informs
the perception of important properties such as comfort and fric-
tion, and is essential for manual dexterity (Johansson and Westling
1984).

Varying surface roughness is common in conventional tech-
nologies, such as injection molding for plastic and, in a more re-
stricted form, in knurling in CNC machining. Additive fabrication
technologies drastically increase the flexibility of roughness con-
trol; on the other hand, as the range of materials used by current
additive technologies is more limited, roughness and other tac-
tile properties often must be controlled with geometry variation,
rather than with the choice of material.

The relationship between surface geometry, material properties,
and tactile perception is intricate, which makes the task of produc-
ing and designing tactile properties difficult. For many aspects of
visual and auditory perception, a variety of models (e.g., perceptual
color models and equal-loudness curves) are available, and these
are broadly used for applications such as rendering and sound pro-
cessing and synthesis. Our level of understanding of tactile per-
ception is far less mature. Although many studies have been done
over time, a widely accepted model is still absent: progress has
been slow due to the complexity of the tactile system and the dif-
ficulty of producing controlled stimuli. An important goal would
be to develop a model of tactile sensation that can be used for tac-
tile “rendering,” i.e., producing objects with controlled tactile feel.
Important steps in this direction were made recently in the con-
text of additive fabrication applications by Piovarči et al. (2016),
who developed a model for compliance perception that can be
used to control one dimension of tactile perception of 3D printed
objects.
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In this article, we focus on another dimension of tactile per-
ception: roughness. Digital fabrication makes it more practical to
control roughness directly and at the same time provides a way
to study perception of roughness by producing diverse fine-scale
stimuli for studies.

Generally, a rough surface is a surface that causes uneven pres-
sure on the skin when touched statically and elicits vibrations
when stroked (Tiest 2010). Human skin contains four different
types of mechanoreceptors that mediate tactile sensation of spatial
distributions, vibration, and skin stretch, and this low-level pro-
cessing is followed by higher-level processing. Nevertheless, it is
generally accepted (Hollins and Risner 2000) that roughness sensa-
tion is well described by at most two dimensions, one of which can
be described as roughness proper (large-scale roughness) and the
other as vibrational roughness corresponding to very small-scale
effects.

In this article, we propose a computational model relating sur-
face geometry to perceived (large-scale) roughness based on strain
fluctuation variation in an elasticity model. We use human percep-
tion studies to compute a perceptual space of roughness by apply-
ing multidimensional scaling, and we demonstrate that our model
matches experimental results significantly better than previously
proposed models. We show how this model can be applied in the
context 3D printing to achieve a range of effects.

As a part of our experiment design, we developed an approach to
producing a range of controlled tactile stimuli, which is likely to be
of value for future studies of roughness. The 3D stimuli models, the
code for geometry generation, and the raw data of the experiments
will be released to encourage further exploration of this topic.

2 RELATED WORK

Our work builds on sources in several areas, including psy-
chophysical literature and work in computer graphics related to
perceptually based rendering and digital fabrication.

2.1 Tactile Fabrication

Recently, several works have explored the fabrication of objects
with tactile properties. Our work is closest to Piovarči et al. (2016)
in aims and in the methods we use to construct and evaluate our
model. This work develops a model for perceptual compliance us-
ing stimuli fabricated from materials with different compliance
properties. In our work, we use similar experimental protocols and
multidimensional scaling analysis techniques to find a perceptual
space, but we develop a model for roughness. Compared to compli-
ance, roughness is primarily related to small-scale surface geom-
etry instead of overall bulk material properties; therefore, a much
larger physical space of possible surface profiles is mapped to a
single perceptual dimension.

Another work with similar aims is Elkharraz et al. (2014), which
fabricated texture plates from a set of visual textures converted
to shallow height maps, asked human subjects to rate the result-
ing textures according to a set of adjectives (including “rough”),
and analyzed a set of computational texture features to find those
highly correlated with the perceptual scales. Although this article
reports success with prediction of tactile roughness, the dataset is
quite limited compared to the dimension of the feature space. In

Fig. 2. Diagram of the structure of human skin (CNX 2017). Roughness

perception is primarily mediated by Merkel cells, or SA1 receptors, located

approximately 0.75mm deep in the skin.

Section 5, we compare this model to ours and demonstrate a sig-
nificant improvement in performance.

Other recent work in the fabrication domain has aimed to facil-
itate the incorporation of tactile properties in 3D printed models.
Torres et al. (2015) provide an interface to fabricate objects with
a user-specified weight, compliant infill, and rough displacement
map. However, their roughness metric relies on texture feature
size, which is not always definable and does not describe a com-
prehensive model for all textures. Chen et al. (2013) also develop
methods to fabricate objects with specified deformation behavior
and textured surface displacement, but they similarly do extend
to tactual perceptual specifications. Our model offers an improve-
ment to surface roughness specification in these types of inter-
faces. Relatedly, Lau et al. (2016) developed a method to analyze
meshes for tactile saliency, identifying mesh regions most likely
to be touched. Incorporating tactile saliency with our work could
create a natural tool to suggest the application of appropriate tex-
tures on salient regions of objects prior to fabrication.

2.2 Psychophysics of Roughness Perception

Perception. Research in the sense of touch, while extensive, is
still limited when compared to vision and hearing. Various works
have aimed to quantify different aspects of the sense of touch. Re-
search suggests that tactile perception falls in a multidimensional
space varying along three (Hollins et al. 1993) or four to five (Tiest
2010) dimensions; of these, roughness has been found as the most
significant dimension. Roughness can further be divided into two
aspects: small-scale roughness caused by features less than 0.1mm
in size, which elicit vibrational cues perceived by Pacinian corpus-
cles deep in the skin, and large-scale roughness, which is mediated
primarily by Merkel cells at the base of the epidermis that respond
to strain (a third mechanoreceptor, the Meissner’s corpuscle, also
plays a part in lower-frequency vibration detection) (Figure 2). The
remaining three dimensions are compliance, stickiness, and sur-
face warmth or heat conductivity.

A major issue that has prevented the comprehensive study of
tactile perception, and specifically roughness perception, is the
lack of suitable stimuli: in comparison to the generation of visual or
auditory stimuli, tactile stimuli are relatively difficult to manufac-
ture with the desired accuracy. Most early studies in tactile percep-
tion used different types of common manufactured surfaces, such
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as sandpaper (Hollins and Risner 2000), paper, and fabric (Chen
et al. 2009; Manfredi et al. 2014; Weber et al. 2013), and other every-
day items. However, these surfaces are not ideal as stimuli because
they vary across multiple dimensions, and their surface features
cannot be easily quantified; even graded sandpaper varies widely
by manufacturer.

To overcome these problems, some studies in roughness percep-
tion have manufactured artificial stimuli. The two common types
of custom stimuli are square gratings, which are manufactured us-
ing machine engraving (Lederman 1974; Yoshioka et al. 2001), and
photo-embossed dots. The studies suggest that perceptual rough-
ness has a positive correlation with groove width or spacing and
a slightly negative correlation with ridge or dot width. Yoshioka
et al. (2001) and Connor et al. (1990) developed neural models us-
ing these stimuli; they found that the mechanoreceptor firing rates
elicited by touching these surfaces were correlated to perceived
roughness via firing rate spatial variation. The spatial variation
hypothesis was also explored recently by Goodman and Bensmaia
(2017), who showed that it could predict perceptual roughness for
several raised-dot stimuli used in past experiments. We use this
hypothesis as a base for our model in Section 5.

The artificial stimuli used in these past experiments have signifi-
cant limitations. While engraved gratings are precise, they present
a limited and unnatural stimulus. The photo-embossing process
most often used for dot stimuli also has several limitations; it ef-
fectively supports only two levels of height (unblocked areas are
solidified, and blocked areas are not) with little control over the
intermediate areas, and the material is quite flexible. In contrast,
recent developments in fabrication, such as the stereolithography
3D printing we use to manufacture our stimuli, allow the creation
of solid stimuli with any surface geometry at a high resolution,
covering the complete range for (large-scale) roughness. In fact, to
our knowledge, no psychophysics study to date has used stimuli
with raised dots as small or finely spaced as those used here. Ad-
ditionally, no study to our knowledge has tested the roughness of
textured curved surfaces.

Physical Modeling. Research in perception has also worked to
model the lower-level mechanoreceptor responses in humans and
related primates. Several works have aimed to model the skin me-
chanics and receptor responses: Phillips and Johnson (1981) cre-
ated a continuum mechanics model for the skin contacting bars
and gratings, and Dandekar et al. (2003) developed a 3D FEM model
to accurately match skin displacement under line loads and predict
Merkel cell responses to these indentations. Both studies found
that Merkel cells have a firing rate closely matched to the maxi-
mum compressive strain elicited in the skin. Indeed, recent strides
in molecular biology (Woo et al. 2014) have shown that Merkel
cells express the mechanically activated ion channel Piezo2 as a
means to mediate mechanosensation. This relation between strain
and firing rates is used as a basis for our computational model in
Section 5.

2.3 Haptic Rendering

Other work exploring tactile perception has been motivated by
haptic applications. Early haptics research focused on virtual touch
using rigid styluses or probes as feedback devices. For example,

Otaduy et al. (2005) developed a perceptual model for haptic ren-
dering of forces and vibrations elicited by the contact of textures
in this manner. Several studies have measured perceived surface
roughness of virtual textures using a stylus (e.g., Klatzky and
Lederman (1999), Yoshioka et al. (2007), and Okamoto et al. (2012)).
Importantly, these works are based on a vibratory perceptual
model of texture and roughness perception, as transmitted through
a rigid object. In contrast, we aim to manufacture objects to be
touched with bare skin, which provides more natural and im-
proved tactile information.

Other recent developments have enabled the rendering of tactile
features on various types of touch displays. Many types of tactile
touchscreens have been proposed (e.g., Kim et al. (2013) and Meyer
et al. (2013)), which use electrostatic attraction to alter friction and
simulate texture or gradient. Bau and Poupyrev (2012) developed
AR technology using reverse electrovibration, which injects elec-
tric signals into the user to elicit smaller-scale tactile sensations.
However, this is still fundamentally vibratory signaling. Iwata et al.
(2001) developed an early method of rendering haptic height sur-
faces directly by projecting an image on a flexible screen over an
actuator array. More recently, Hashizume et al. (2016) developed
a tactile rendering display using magnetorheological fluid (MRF),
a liquid that changes viscosity in response to magnetic fields.
These methods represent promising advancements to on-the-fly
rendering of real textures and could be used in conjunction with
our model to further explore roughness perception and texture
rendering.

3 OVERVIEW AND MAIN RESULTS

The main goal of this work is to develop a computational model
describing the perceptual roughness of a given geometric surface
texture, which can be applied to produce a range of tactile surface
behaviors.

Model Summary. Given an input 2D height field describing a
surface texture H (x ,y), our model is a function f (H ) producing
a scalar value estimating the perceptual roughness of the texture.
Our pipeline is depicted in Figure 1. The perceptual roughness esti-
mate f (H ) is obtained by first running a simulation to find the con-
tact area and resulting deformation of a skin-like elastic medium in
contact with the surface texture. Then the field of maximum com-
pressive strain is computed at a fixed depth corresponding to the
average depth of Merkel receptors. The strain field is sampled at
pairs of points separated by a fixed distance, extracted from exper-
imental data, to find the mean strain fluctuation variation, defined
as the mean absolute difference between strain magnitudes of the
sampled pairs. This value describes the perceptual roughness of
the input geometry.

We use psychophysical experiments to validate that the percep-
tual space of roughness can be described by a single dimension and
to construct a metric on this space. We demonstrate that our model
describes this space with a linear relationship (r = 0.911). Experi-
ments are also used to place a standard scale of reference textures
in the perceptual space, which can be used as a reference set to
match against other textures to predict roughness equivalence.

Our model tuning and validation process consists of the follow-
ing steps:
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• We synthesize a set of textures comprising a variety of para-
metric and natural textures. We fabricate these textures as
flat plates using a high-resolution (30μm) stereolithography
3D printer.

• We perform a series of psychophysical experiments with hu-
man subjects, comparing the differences between textures.

• We use nonmetric multidimensional scaling (NMDS) with
the experimental results to establish that the roughness per-
ceptual space is one-dimensional (Section 4) and to place the
stimuli in this space.

• We acquire the actual geometry of the printed plates using
micro-CT scanning.

• For each texture, we perform FEM simulation to compute the
deformation of a skin-like elastic medium when pressed in
contact with the texture. An iterative process is used to re-
solve the contact area.

• From the simulation, we compute the maximum compressive
strain field at a depth of 0.75mm, and we compute f (H ) as
the strain fluctuation variation of this field.

• We test the linear dependence between the coordinates as-
signed by the NMDS to the stimuli Hi and the roughness
estimates f (Hi ) produced by our model, and tune the sam-
pling parameters of the model to match the perceptual data
as closely as possible (Section 5).

4 PERCEPTUAL SPACE

In this section, we describe how we establish that the perceptual

space for (coarse) roughness is one-dimensional and construct a
map from stimuli to points in this space. The overall idea, follow-
ing from previous work, is to use experiments to obtain an estimate
of relative perceptual proximity for triplets of stimuli (i.e., which
of a pair of stimuli feels closer to a reference stimulus). A multi-
dimensional scaling algorithm is then used to assignn-dimensional
points to stimuli so that Euclidean distances between these points
have the same ordering as obtained from the experiments: stim-
uli corresponding to closer points feel more similar than stimuli
corresponding to points at a larger distance.

4.1 Stimuli

A fundamental issue in the study of perceptual roughness is the
large variety of possible surface textures. Inherently, conducting
experiments with human subjects limits the number of textures
we can study: using three-way comparison experiments, with N

textures we need to obtain a reasonably large sample of ( N
3 )

combinations.
We used 46 textures in our experiments. We used two distinct

types of textures as stimuli: artificially synthesized textures, and
real-life “natural” textures described below.

Synthetic Texture Geometry. Synthetic textures serve two pur-
poses: (1) to provide a one-dimensional family that can be used as a
reference scale for roughness and (2) to explore the effects of some
of the geometry parameters that previous studies have shown to
be important for tactile perception.

Specifically, we choose bump textures that allow us full control
over texton spacing, shape, and distribution (in the present study,
all textures had elements with random isotropic distribution).

Fig. 3. Modeling process for isotropic textures. The modeling process al-

lows for variation of texton arrangement, spacing λ, and shape (here we

control the tip diameter d ).

Bump spacing allows control of the spatial frequency of contact
points between the texture and the skin, which is known to
be correlated with roughness; bump shape, on the other hand,
controls the size of the contact zones and the sharpness of the
transition between contact and noncontact zones, which has
a significant effect on strain distribution, a key component of
our model. Unlike, e.g., ridge patterns, our bump textures are
isotropic, so we can factor out the aspect of strong regularity.

The 3D modeling procedure used to specify isotropic textures is
shown in Figure 3. We begin with a magnitude spectrum, repre-
senting the magnitude component of the Fourier transform of the
image. For random, isotropic textures, with one dominant wave-
length over all directions, this magnitude spectrum is visualized
as the outline of a circle with a radius given by s/λ, where s is
the pixel size of the image and λ is the dominant wavelength
(Figure 3(a)).

We then take the 2D inverse Fourier transform using the mag-
nitude and a random phase matrix, resulting in a random texture
with a dominant wavelength of λ (Figure 3(b)). To produce the
bump texture, we take the relative maxima of the inverse Fourier
transform to obtain a dot pattern yielding the centers of the bumps.
The resulting textured surface has textons arranged with an aver-
age spacing at the specified wavelength (Figures 3(c) and 3(d)). In
this way, we have complete control over the local bump shape:
in our experiments we use truncated cones with or without a
rounded cap.

We fabricated a reference set of 13 standard isotropic bump
samples varying in a single parameter, average distance between
bumps, which ranges from 0.625 to 1.625mm. These textures have
standard texture elements shaped as 1mm-tall truncated cones
with spherical caps 0.3mm in diameter. Additionally, we fabricated
five isotropic bump samples with texture elements shaped as trun-
cated cones with flat tops of varying diameters from 0.1 to 0.5mm,
to explore the dependence on the contact area.
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Fig. 4. Psychometric curves fit to percentage data, from our previous

study. Errors bars show SEM across subjects.

We also fabricated a set of 28 real-world texture height maps;
of these, 24 were acquired from high-resolution scans on the Sur-
faceMimic 3D scan repository and three from the Brodatz texture
database, and one was procedural. The texture set was composed
of many common natural and manufactured materials, such as
burlap, leather, and stucco; textures varied in height, pattern, and
isotropy. We fabricated these textures out of the same material, in-
stead of, e.g., using the natural samples, to eliminate the effects of
small-scale roughness and compliance.

All texture samples were fabricated as 25-by-25mm square
plates using a B9Creator stereolithography 3D printer with 50μm
resolution in xy and 30μm resolution in z. Textures ranged from
having little surface texture to having greatly varying surface tex-
ture. A selection of stimuli is shown in Figure 7, and a table of all
46 textures is provided as supplementary material.

Threshold of Discrimination. To select the reference set of bump
textures, we refer to data gathered in our earlier study (described
in detail in Tymms et al. (2017); all other studies presented in this
article have not been described elsewhere).

In this previous experiment, 16 subjects participated in two-
alternative-choice trials to identify which of two presented bump
textures felt smoother. To this data, we fit psychometric curves
(Figure 4) and extracted the absolute thresholds σ . The Weber
fraction, or relative threshold of discrimination, describes the
proportional difference in texture wavelength required in order to
distinguish (with 75% accuracy) between two textures. The Weber
fraction was found to be 0.19, which is in good agreement with
the existing literature (Figure 5).

This value serves two important purposes: first, to act as a
threshold for selecting substantially different textures, and sec-
ond, to demonstrate that our choices for reference textures sam-
ple the perceptual space densely enough. At the smoother end of
the scale, we fabricated textures with 0.0625mm wavelength differ-
ences; at the rougher end we used an interval of 0.125mm. These
reference textures are shown in Figure 6 along with the threshold
σ . In most cases, our textures sampled the space with a density
around 2σ .

Fig. 5. The threshold of discrimination is proportional to the tested wave-

length by a factor of 0.19, known as the Weber fraction.

Fig. 6. The standard scale of reference textures (numbers 1 through 13)

depicted along a logarithmic line scaled to the threshold of discrimination

σ . The textures sample the perceptual space at a greater density than the

threshold of discrimination.

4.2 Experiments

Our experiments serve three purposes in this study:

• We validate the hypothesis that perceptual roughness is rea-
sonably measured by a one-dimensional parameter, more
specifically, that any set of textures can be ordered in a way
so that if one texture comes before the other, it is always per-
ceived as rougher.

• We show that the perceptual roughness ranking inferred
from the experiments is closely matched to the one given by
our choice of the model for roughness perception, the strain
fluctuation variation model.

• By including a one-parametric reference set of textures in
the set of stimuli, we establish a correspondence between a
simple parameter of the family (spacing of the bumps) and
the physical roughness measure.

The two most common types of psychophysical experiments
used with human subjects involve either pairwise comparisons of
roughness of stimuli (which stimulus feels rougher) or estimating
subjective roughness on a scale, e.g., 0 to 10. The former provides
a simpler and more intuitive task for the subjects, and as such the
data is more reliable. However, the results are harder to use for
perceptual space dimension analysis, as they do not provide direct
information on the perceived distances between stimuli. The sec-
ond type of experiments is more suitable for dimension analysis,
but the task is more complex and leads to less reliable results.

In line with Piovarči et al. (2016), we use a variation of the first
type of the experiment, where instead of a single pairwise com-
parison between two textures per trial, two test textures are com-
pared in their perceptual proximity to a third , reference texture.
This type of experiment, as we explain below, can be used with
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Fig. 7. Seven examples of the 46 textures used in our experiments. Three bump textures are shown with a green background, and four natural textures are

shown with a blue background. From left to right: standard bump texture with wavelength 0.625mm; standard bump texture with wavelength 1.625mm; flat

bump texture with wavelength 1.0 and size 0.4mm; foam; lizard skin; stucco; knit wool. A list of all 46 textures is provided in the supplementary material.

Fig. 8. In a trial, participants were presented with three texture samples.

They touched each texture using the index finger and answered whether

the leftmost or rightmost sample felt more similar in roughness to the

middle sample.

multidimensional scaling to determine the perceptual space and
dimensionality without relying on subjects assigning a subjective
rating to each stimulus.

The experiment setup is shown in Figure 8. During each trial,
the subject was given three textures, arranged in a row in a fitted
case. They were asked to feel each texture by pressing with the
index finger and to answer whether the leftmost or rightmost tex-
ture felt more similar in roughness to the center texture. Subjects
were free to feel each texture multiple times before making the de-
cision. Subjects initiated a trial by pressing down the right and left
arrow keys on a provided keyboard with their nondominant hand
before making contact with the textures with the dominant hand.
They indicated their choice (the leftmost or rightmost texture) by
releasing the left or right arrow key, respectively. This method al-
lowed us to record both the subjects’ responses and the amount of
time taken for each response.

We included a set of practice trials at the beginning of each ses-
sion to familiarize the subjects with the mechanics of the task and
to ensure that they understood the task protocol. Visual feedback
was avoided by using a cut box placed over the texture case so that
textures could be touched but not seen from the subjects’ view-
point. Fourteen subjects (21 to 35 years old) participated in these
experiments. All self-identified as strongly right-handed and re-
ported normal sensory and motor functionality of the hands and
fingers. Each subject performed trials for 1 to 2 hours, resulting in
between 100 and 250 triplet comparisons. The order of trial com-
parisons was randomized.

4.3 Data Analysis

MDS. We briefly review NMDS, which we use to find a Euclidean
embedding of the roughness space of our samples.

This method takes as input a set of triples {(i, j,k )}, where i , j, k
are stimuli used in a trial (with j as the reference sample), and the
ordering Di j < D jk , where Di j is the perceptual distance between
samples i and j. In other words, the input consists of the ordering
of the pair comparisons, without magnitudes of the dissimilarities.

As in classical MDS, the problem is transformed into one that
can be stated in terms of the Gram matrix K . Because all distances
are assumed to be nonnegative, the set can be transformed to

S =
{
(i, j,k ) |D2

i j < D2
jk

}
.

Now
D2

i j = ‖xi − x j ‖22 = x�i xi − 2x�i x j + x
�
j x j

= Kii − 2Ki j + Kj j .

Therefore, we can write the triplet conditions as

= Kii − 2Ki j + Kj j < Kj j − 2Kjk + Kkk .

Thus, the goal is to find a Gram matrix K that satisfies the in-
equality constraints of this form for every triplet (i, j,k ) in S . Since
it is a Gramian matrix,K is the inner product for some set of points.

The set of constraints does not define a unique matrix K : it is
still subject to scale, translation, and rotation. Therefore, we simply
constrain K so that it is centered at the origin and has a range of
(−1,1).

Finally, we want to minimize the dimensionality or rank of K
while also ensuring that it adequately satisfies the inequality con-
straints. As the rank of a matrix is a nonconvex term and minimiz-
ing it while optimizing for inequality constraints is an NP-hard
problem, Wills et al. (2009) formulate the problem as instead min-
imizing the trace of the matrix. The full problem is formulated as

arg min
K,ξ

∑

(i, j,k )∈S
ξi jk + λTr(K )

∀(i, j,k ) ∈ SKkk − Kii + 2Ki j − 2Kjk ≥ 1 − ξi jk ,

ξi jk ≥ 0,
∑

ab

Kab = 0,K � 0.

ξi jk are slack variables introduced to allow for violations in the
inequalities, and the variable λ is a regularization parameter that
balances the complexity (i.e., dimensionality) of the model with the
fit. The SeDuMi solver for Matlab is used to solve this optimization
problem.

Cross-Validation. The goal of cross-validation is to find the opti-
mal λ value. We use 10-fold cross-validation as suggested in Wills
et al. (2009). In each iteration, the data is divided into 10 sets, with
one set treated as the testing set and the rest as the training set.
The optimization is run on the training set for a given λ, and the
average testing and training error is reported as the mean across
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Fig. 9. The placement of our 46 texture samples in one dimension using the NMDS algorithm. The number labels correspond to those in Figure 7 and in

the table in the supplementary material.

Fig. 10. Left: Cross-validation determines the optimal λ value as 0.7. Right:

Most of the variance is confined to the first dimension, indicating a good

fit in one-dimensional space.

these trials. We aim to optimize the tradeoff between testing and
training error. When λ is small, the algorithm favors reducing the
violations for all conditions and results in low training error but a
high testing error, implying that the embedding does not general-
ize and may overfit to noise in the data.

We obtained the optimal embedding with λ = 0.7 as shown in
Figure 10. The spread for this embedding shows the variance across
each dimension; most of the variance is contained in the first co-
ordinate, indicating that the space fits well in one dimension.

Errors. To find margins of error, we use a standard bootstrapping
technique. We recomputed the embedding 500 times by randomly
resampling the data points with replacement, and we compute
confidence intervals as the 5th and 95th percentile of the resulting
embeddings. The final embedding with these error bars is shown in
Figure 9. Samples are numbered according to the labels in Figure 7.
Note that because of the large number of stimuli, only a small pro-
portion of possible combinations was tested; therefore, the error
bars represent upper bounds for error and are likely larger than
the subjects’ actual margin of error.

4.4 Curved Surfaces

Many natural applications for rough textured surfaces involve 3D
objects with nonzero curvature, rather than flat objects. An ob-
vious question is whether the perceived roughness of textured
curved objects is the same as that for textured flat plates. To answer
this question, we performed an additional psychophysical experi-
ment comparing a new set of curved textures to the set of flat tex-
tured plates. The stimulus set was manufactured in the same way

Fig. 11. Our curvature experiments tested the roughness of textured

curved surfaces with one of four curvatures (20 or 40mm, concave or con-

vex) against the standard set of bump texture plates. Curved surfaces were

textured with the standard bump texture in one of three wavelengths.

and consisted of 12 singly curved surfaces, textured with one of
three bump texture wavelengths of different roughness (0.75mm,
1.0mm, 1.25mm). Textures had one of four different curvatures:
concave or convex, with radius of curvature 20mm or 40mm, as
shown in Figure 11. Here we define a concave object as having a
negative radius of curvature, and a convex object as having a pos-
itive radius of curvature.

In experiments, subjects were presented with one curved bump
texture and one flat bump texture. They were instructed to touch
the surfaces with the index finger as in the previous experiment,
and they answered which of the two textures felt smoother. Sub-
jects performed between two and six comparisons per pair. Data
was aggregated over all subjects to find the proportion for each
pair, and the proportions were used to find the Point of Subjective
Equality for each curved texture, i.e., the flat texture wavelength
judged as equivalent to each curved texture. Here, we assume that
if one textured surface is judged smoother than another in 50% of
trials, the two are equivalent in roughness.

Figure 12 shows the point of subjective equality of the four
curved textures for each wavelength. The overlapping shaded ar-
eas, as measured by the double arrows, show the interval for 19%
threshold of the given reference wavelength, which represents the
threshold of equivalence for that wavelength. For all wavelengths,
all of the points fall well within this threshold area, indicating that
the curved textures feel equivalent to their corresponding flat tex-
tures. While some data points (e.g., wavelength 0.75mm, radius
-20) appear a small distance from the base wavelength indicated
by the dashed line, most are close; furthermore, no trend exists
over all of the textures to suggest that curvature has a consistent
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Fig. 12. The points of subjective equality for all curved textures are plot-

ted, with color indicating texture wavelength; the 19% threshold interval

for each wavelength is indicated by the corresponding shaded intervals

measured by the double arrows. All of the points of subject equality fall

within their corresponding interval, indicating that the curved textures

are judged equivalent in roughness to the corresponding flat texture of

the same wavelength.

effect on perceived roughness. The small and seemingly random
differences likely result from variations caused by printing.

From these results, we posit that moderate curvature (with
radius of curvature many times larger than the characteristic
texture scale) does not have any significant effect on perceived
roughness, and that the human tactile system integrates shape
and texture independently. In regions of extreme curvature on
the scale of texture itself, the separation may become unclear
and curvature might have an effect on perceived roughness.
Characterizing perception of roughness in these areas is more
complicated, as it becomes much more dependent on the com-
plex details of contact and highly dependent, e.g., on the exact
finger location or orientation of the applied force. We propose
a method of separating underlying smooth shape and texture in
our model in Section 5, and we show that simulations match our
experimental data in cases of moderate curvature.

5 MODEL FOR ROUGHNESS

5.1 Biological Basis

Our computational model for roughness is built on several pre-
vious works in neuroscience and engineering. It is derived from
a combination of two parts: first, the relationship between the
physics of skin deformation and neural responses, and second, the
relationship between neural responses and high-level perceived
roughness. The former connection has been studied on nonhu-
man primates with direct measuring of skin deformation and neu-
ron firing rates. The latter was studied using firing rate data from
nonhuman primates and perceived roughness ratings from human
subjects using the same stimuli.

In the context of the first question, Phillips and Johnson (1981)
created a continuum mechanics model for skin deformation and
tested several models for predicting the SA1 firing rate data under

bars and gratings; they found that firing rates were most closely
correlated to maximum compressive strain and strain energy den-
sity in the skin. Dandekar et al. (2003) developed an FEM model
of the skin and examined this model in relation to firing rate data
under line loads, finding again that SA1 firing rates were well pre-
dicted by the maximum compressive strain at the receptor depth
in the skin.

Connor and Johnson (1992) and Yoshioka et al. (2001) examined
the second question of the relationship between firing rates and
perceptual roughness assessments, using as stimuli embossed dots
or square wave gratings with different spacings. After examining
several hypotheses, they both found that perceptual roughness
best matched to the spatial variation in SA1 firing rates, mean-
ing the average absolute difference between SA1 firing rates, at
intervals of approximately 2mm. They also verified that Merkel
receptors were the major predictors of surface roughness; other
mechanoreceptors (RA and PC) did not have strong correlation
with roughness judgments.

We combine observations from these studies to hypothesize that
strain fluctuation variation at the depth of mechanoreceptors in
skin is a physical quantity well correlated with subjective rough-
ness perception. We define strain fluctuation variation as the mean
absolute difference of maximum compressive strain fluctuation be-
tween pairs of sample points in the skin, after the effects of bulk
shape are eliminated. The difficulty of using this quantity is esti-
mating the strain of the skin when in contact with specific geom-
etry, which we discuss now.

5.2 Simulation

In general, accurate simulation of skin deformation is a difficult
problem, primarily because of the complex nonlinear and inhomo-
geneous mechanical properties of biological tissues and potentially
high variability of mechanical properties among subjects.

However, we observed that the specific quantity of interest,
variation of strain, is relatively insensitive to these properties:
e.g., increasing or decreasing Young’s modulus of the material re-
sults in relatively small changes in the contact with the surface
(Figure 18).

We first simulate the skin deformation when in contact with
particular texture geometry of the texture defined by a height field
H (x ,y).

To describe our computation of the roughness value f (H ), we
introduce the following notation:

• uH (u,v,w ) is the field of displacements obtained by solving
an elastic contact problem between a model for skin and sub-
cutaneous tissue and the height fieldH (x ,y). (u,v,w ) are the
coordinates in the material domain representing the tissue,
with w = 0 corresponding to the lower surface.

• ϵ (u) = 1
2 (∇u + ∇T

u) is the small-deformation approxima-
tion of the strain tensor.

• λ3 (ϵ ) is the largest-magnitude negative eigenvalue of a sym-
metric tensor.

• V( f ) is the variation functional described in detail in the next
section.

• w0 is the depth of the receptors, which we take to be 0.75mm
(Dandekar et al. 2003).
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Then our roughness estimate f (H ) can be written as a
composition:

f (H ) = V(λ3 (ϵ (uH (·, ·,w0)))).

The critical and most expensive step is the computation of uH

for a given H . Although we use simple linear elasticity as a model,
this function is nonlinear due to the need to resolve contact. This
function also depends on the choice of the model for tissue and
applied pressure.

Skin Model and Geometry Data. To approximate the skin, we
use a two-layer block model created with Tetgen (Si 2015), adap-
tively refined with about 24,000 nodes, which represents 1cm2 in
surface area and 0.5cm in height. The lower half of the model
has a Young’s modulus of 0.042MPa, representing all tissue, and
the upper half, representing the bone, has a Young’s modulus of
18,000MPa, i.e., essentially rigid (Agache et al. 1980). The force
used for this model was 10N, which we found in pilot experiments
where subjects touched textured surfaces placed on a force sensor.
As seen in Figure 18, however, the model is relatively insensitive
to small changes in force.

While this model is rather crude, given the level of noise in the
experimental data, we found it to be adequate. We did not fit the
parameters of the simulation to the data, but this would certainly
be possible once larger datasets with less variance are collected.

We used as input H (x ,y) scanned height maps of the textures,
rather than the original digital models from which the textures
were printed, to take into account the effects of the printing pro-
cess (inflation, rounding of edges which results in decreased strain,
etc.). We acquired high-resolution 3D scans of all of the textures
using a Bruker Skyscan 1172 micro-CT scanner.

Resolving Contact. To build an accurate simulation, we must find
the contact between the skin and the rigid surface. For most sur-
faces, this problem is nontrivial, as the skin may or may not come
into contact with various parts of the surface geometry depending
on the heights, sizes, and distribution of features. Because of the
complexity of the surface geometries, we were unable to obtain
reliable results from commercial FEM software supporting contact
mechanics. Instead, we have implemented our own accurate simu-
lation software based on a simple and robust algorithm, illustrated
in Figure 13.

First, the undeformed geometry is positioned so that it touches
the top points of the texture; i.e., a map p (u,v,w ) → R3 is defined,
so thatpz (u,v, 0) = maxx,y H (x ,y). The points in contact with the
texture are included in the initial contact zone Ωc .

The vertices constrained by this boundary represent the parts of
skin that touch the upper crests in the contacted texture. Then, an
iterative process is run with two steps to build the correct bound-
ary condition. The simulation is run for each step. First, we add
to the fixed boundary set Ωc any vertices that fall below the tex-
ture height H (x ,y). However, this process may overestimate the
vertices in contact with the substrate. Thus, a second step of the
iterative process releases vertices for which the elastic forces are
pointing away from the contact surface. This iterative process ter-
minates after it converges or after a number of iterations to ap-
proximate the contact condition. We found that the process typi-
cally converges in three of these two-step iterations.

Fig. 13. (a) The iterative process simulates the contact between the skin

(blue) attached to a rigid bone (red) when the skin contacts a textured sur-

face (gray). (b) The simulation begins with an arbitrary contact area set

using a threshold (constrained vertices are shown in green). The result-

ing boundary condition may be underconstrained, as many vertices fall

below the contact area (shown in red). (c) All vertices that fall beneath

the boundary are constrained. However, some vertices (as shown in or-

ange) may be overconstrained, or stretched. (d) Overconstrained vertices

are released from the boundary. After a number of iterations, the result

converges to a stable contact boundary condition.

The pseudocode below summarizes the algorithm more
formally; σ denotes the stress and n the normal to the surface:

ΩC ← {(u,v ) |pz (u,v,0) = H (px (u,v,0) , py (u,v,0) )}
repeat

Solve for u with Ωc fixed
p
′ ← p + u

Ωincl
c ← {(u,v ) |p′

z (u,v,0)
< H (p′

x (u,v,0)
, p′

y (u,v,0)
),

(u,v ) � Ωc }
Ωexcl

c ← {(u,v ) |nT σ (u,v, 0)n < 0, (u,v ) ∈ Ωc }
Ωc ← Ωc ∪ Ωincl

c \ Ωexcl
c

until Ωc does not change

5.3 Computing Variation

Strain Fluctuation. In 3D objects with a nonzero curvature, the
simulated maximum compressive strain field indicates two inde-
pendent properties: the global object shape, indicated by the large-
scale, global changes in strain across the surface, and the texture,
which results in small-scale local fluctuation. An object with zero
curvature has a negligible change in global strain, resulting in a
globally flat strain field; however, curved surfaces elicit a vary-
ing strain field that reflects the global shape of the curved sur-
face, as shown by the blue curve in Figure 15. If our model is to
be used directly on curved surfaces, we must separate the quali-
ties of shape and texture and eliminate effects from shape when
computing the texture roughness. Thus, we propose a strain fluc-
tuation variation model, which eliminates effects in the maximum
compressive strain field caused by changes in large-scale shape.

Given a textured surface, we first compute the maximum com-
pressive strain field as described in the previous section. We also
compute the maximum compressive strain field for a nontex-

tured surface with the same global curvature. We subtract this
nontextured strain field from the original strain field to find an
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Fig. 14. Examples of simulation input height maps (left) and output com-

pressive strain fields (right), visualized as grayscale height maps.

Fig. 15. For curved objects, we must find an updated strain field that elim-

inates effects from large-scale shape. As shown in blue, the original strain

field changes over the surface, according to the convex object shape. How-

ever, when we compute and subtract the strain field of the same nontex-

tured convex shape (green), we acquire the texture strain fluctuation field

without any effects from shape (red).

updated field that eliminates effects from large-scale shape. A two-
dimensional simulation example is shown in Figure 15. Note that
as described below, we take the variation, or absolute difference,
between points on this field; therefore, the change in magnitude
across the whole field does not have an effect on the final value.

Roughness may be measured on input geometry (e.g., acquired
by scanning) that is not initially separated into a smooth base
surface and a displacement field. The spectral domain provides
a natural way to perform this separation by extracting the low-
frequency part below the texture frequency. Typically, however,
the input samples can be obtained in a flat form; for tasks like tex-
ture synthesis and application of an existing texture to a surface, no

Fig. 16. For each texture simulation, the maximum compressive strain

profile was obtained for a depth of 0.75mm. To find the strain variation,

pairs of sample points (shown in red) were chosen from inside sampling

areas (shown in yellow) with radius r separated by distance d . The mean

absolute difference of all such pairs is defined to be the mean strain vari-

ation. Mean strain variation was found to match perceptual estimates of

roughness.

adjustment of roughness is needed as long as the curvature is not
extreme.

Strain Variation. From the maximum compressive strain fluctu-
ation field (Figure 14), we take a set of random samples. Previ-
ous works have suggested taking an interval of 2.2mm (Connor et
al. 1990) or anywhere from 1 mm to 3 mm (Yoshioka et al. 2001).
In reality, mechanoreceptors occupy random locations in the skin
according to an average density, and a single neuron may be in-
formed by multiple branching receptors. Thus, our sample pairs
do not have a single exact spacing; instead, we take samples ran-
domly from radii r separated by a given distance d , as shown in
Figure 16. We take 8,000 random sample pairs across a 8 × 8mm
area in the center of the simulation area (to avoid unwanted ef-
fects from the edges). From these pairs we find the mean strain
variation, the average absolute difference in maximum compres-
sive strain at those point pairs. We found the optimal sampling for
our perceptual data to be d = 0.8, r = 0.8, which resulted in a co-
efficient of correlation R = 0.91. As a note, many other samplings
also produced good fits, with correlation coefficients greater than
0.85 (see Figure 18).

5.4 Results

The results of our method and a comparison to several measures
suggested in previous works are shown in Figure 17. Ra is the
arithmetic average of absolute values of heights, a simple rough-
ness parameter commonly used in profilometry that has also been
used to estimate perceptual roughness in many works (e.g., Chen
et al. (2009)). The 90th percentile height, GLCM sum of squares,
and GLCM variance were suggested by Elkharraz et al. (2014)
as close estimates to perceptual roughness. Our strain variation
roughness measure performs significantly better than any of the
other measures.
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Fig. 17. Comparison of roughness values found by four different methods

suggested in previous work (Ra , 90th percentile, GLCM sum of squares,

and GLCM variance) and our method (strain variation). Our method pro-

duces the best fit, with an R value of 0.91. The bump textures are shown

in green dots, and the natural textures are shown in blue dots.

Model Sensitivity. To test whether this model is stable with re-
spect to the force and sampling parameters, we recomputed the fit
with small changes to these variables (Figure 18). As shown on the
left, the model is relatively insensitive to changes in the simulated
force. Good fits are still produced within a range of 50% to 200%
change in force from our choice of 10N. The model may fail if the
force is very high or low, likely because the contact area changes
significantly. As shown on the right, our model was also found to
be insensitive to changes in the sampling parameters; we tested a
large range of sampling parameters, and all resulted in a correla-
tion of R > 0.85.

Texture Homogeneity. In this article, we define the word texture

as a somewhat homogeneous surface, which has a consistent
roughness across all areas. The textures we used as stimuli seemed
homogeneous in appearance, but we also wanted to determine
whether the textures were homogeneous in tactile roughness.
To this end, we computed the roughness of each surface on fifty
5mm square sliding windows across the span of the surface. We

Fig. 18. Left: The model is relatively insensitive to small changes in applied

force, but the fit worsens for large changes. Right: The model fit is relatively

insensitive to change in the choices of sampling distance and radius; the

fit changes slightly but still has a correlation over 0.85 for all values tested.

Fig. 19. Fit for the data excluding the five textures shown in red, which had

significantly higher variance in calculated roughness across the surface.

then computed the variance of the computed roughnesses in
proportion to the average roughness of the surface. Most textures
had a very small variance, on the order of 10−4. Five natural
textures had significantly higher variance, greater than 10−3.
These textures are highlighted in red in Figure 19. The calculated
R correlation value excluding these textures is slightly improved,
at R = 0.965. We posit that the inhomogeneity of these textures
may have caused subjects difficulty in determining the roughness
consistently across the surface; when touching different regions
of the textures, subjects may have perceived contradictory results.

Curved Surfaces. Figure 20 shows results of the strain fluctuation
variation model for curved surfaces with the three textures tested
in Section 4. For each of the three textures, the predicted rough-
ness of 10 different curvatures was compared against the rough-
ness of the uncurved texture, and the percentage difference from
the uncurved texture was calculated. As expected, the percentage
difference between the curved and flat texture was typically below
the 19% threshold, except in the case of high curvatures.

6 APPLICATIONS

Applying particular tactile textures to fabricated objects is useful
for both functional and aesthetic reasons. Many everyday objects
have a tactile texture, including figurines, grips and handles, but-
tons, and other parts of objects that are used for interaction. While
past work (e.g., Torres et al. (2015)) has been interested in apply-
ing tactile textures to objects, they did not use a specific perceptual
model. Our model can be used to confer more precise and more di-
verse roughness characteristics to fabricated objects.

ACM Transactions on Graphics, Vol. 37, No. 5, Article 168. Publication date: October 2018.



168:12 • C. Tymms et al.

Fig. 20. For the three textures used in Section 4, the percent difference in

simulated roughness was calculated between the flat texture and curved

textures of different radii. The percent difference is typically below the 19%

threshold (the black dashed line), with the exception of very high curva-

tures (less than 10mm for concave surfaces, and less than 3mm for convex

surfaces).

Fig. 21. Two models, the gecko (left) and key cap (right), were fabricated

with two textures each. Fabricated models have height textures scaled to

have different tactile roughnesses, as matched against the standard set.

In this section, we describe several applications illustrating how
our model can be used in fabrication. We first show that it can aid
in the process of choosing textures to fabricate a 3D object with
a desired roughness. Second, we show how our scaled perceptual
model can be used to fabricate representations of visual images us-
ing distinct tactile properties in the place of distinct visual proper-
ties, such as color. Lastly, we demonstrate how our general model
can be used to manufacture unique combinations of visual and tac-
tual properties.

Fig. 22. (a) Hedgehog with a rough bump texture that feels spiky.

(b) Screwdriver handle with a moderately rough bump texture for easy and

comfortable gripping. (c) Spinning “fidget ring” with rough cloud texture.

Fig. 23. From an original image (a), a depiction of a lion was created using

two different roughnesses to correspond to the colors (b). The fabricated

model is shown in (c). (The black image outlines are represented as smooth

raised lines.)

Fig. 24. A representation of De Stijl-style geometric artwork (a) was cre-

ated using five different easily distinguishable roughnesses (b) to represent

the five colors. The fabricated model is shown in (c).

Height Maps and Roughness. Often, users desire to apply a given
height map to a texture to confer both visual and tactual proper-
ties; however, until now, it has been difficult to predict or alter the
tactile properties of a visual height map. Using our model, we can
make small changes to the scale or height of a height map to pre-
serve the appearance while drastically altering the tactile rough-
ness. We show two examples in Figure 21. First, a gecko model
(WebmasterZero 2016) is given different displacements of the same
“lizard skin” texture and three of the “burlap” texture. By altering
the scale of these textures, we produce three different geckos, each
with distinct tactile roughnesses.

We also produce a second model, a textured key cap of the type
used for key identification; the texture enables the key to be iden-
tifiable in the dark. The key caps are textured with two scaled ver-
sions of the “leather” height map and three of the “foam” height
map, and each of these occupies a different perceptual roughness.

Additional examples of fabricated tactile objects are shown in
Figure 22: a hedgehog model with a rough bump texture, a screw-
driver handle with a moderately rough texture, and a spinning “fid-
get ring” with a rough cloud texture.

Tactual Images. Producing tactual images is of interest not
only for aesthetic reasons but also for practical reasons relating to
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Fig. 25. Textured plates with visual (left) or tactile (right) renderings. The top row shows the rendered models; the middle row shows the 3D prints; the

bottom row shows a visual representation of the tactile strain map. The left panel shows four texture plates with visible features that cannot be perceived

tactually. Conversely, the right panel shows the same four shapes, which cannot be seen but whose outlines can be felt, as seen in their strain profiles.

Fig. 26. Textures can be produced that contain hidden visual or tactual

messages.

accessibility: people who are blind can greatly benefit from tex-
tured representations of images, e.g., picture books, educational
materials, or works of art (Theurel et al. 2013). We use the rough-
ness scale generated by our model to identify sets of textures that
have significantly different tactile roughnesses. In this way, we can
replace the colors in images with distinct textures, so that the col-
ors can effectively be perceived tactually. Figures 23 and 24 show
examples of images fabricated in this way. As shown in the cen-
ter panels, the chosen textures are distinct from one another by an
interval larger than the threshold of discrimination.

Controlling Visual and Tactile Properties Independently. To
demonstrate the control over tactile properties our model affords,
we consider two examples: visible variation in a geometric tex-
ture that is perceived as tactually homogeneous and, conversely,
an invisible variation in texture producing a variation in tactile
perception.

For the first example, we manufacture several bump texture
plates that feel like uniform textures; however, the noncontacted
parts of the model are altered to produce a visual feature on
the model, i.e., a feature that can be perceived visually but not
tactually.

Similarly, we show that we can manufacture an object that has
a consistent visual appearance but contains a hidden tactual char-
acteristic. We manufacture the same plates, using the variation in
texton height that produces strain differences, so that the differ-
ence cannot be clearly seen but the shape outlines can distinctly
be felt.

These plates, fabricated with visible or tactile shapes, are shown
Figure 25 and Figure 26.

In an informal experiment, eight subjects were presented with
the tactile plates in Figure 25 either in a visual or tactile context and
asked to identify whether a shape was present on the plate. On the
tactile plates (Figure 25, right), all subjects were able to tactually
identify the presence of shapes, and in most cases could identify
the specific shape (the cross shape was most difficult to discern); in
the visual plates (Figure 25, left), subjects did not tactually perceive
any shape. Similarly, subjects could not visually identify specific
shapes in the tactile plates, but they were able to clearly see the
shapes on the visual plates.

7 CONCLUSION

We have presented a perceptually based model for evaluating the
tactile roughness of surface textures. Using perceptual experi-
ments with 46 different surface textures, we found that the per-
ceptual space for roughness fits well in one dimension, and we
used this space to create a physically based perceptual model for
evaluating tactile roughness. We demonstrated how this model can
be used to predict or compare the tactile roughness of fabricated
objects, to select surface textures with different roughnesses, and
to create textures with unique combinations of visual and tactile
features.

7.1 Limitations and Future Work

Our model only applies to large-scale roughness. Our stimulus set
was limited to a single material and a minimum feature resolution,
as our 3D printer tends to smooth small features, so fine features
(<0.2mm) were not possible to test. As mentioned in Section 5, our
model only applies to homogeneous textures, which feel the same
over the surface; in practice, it may give incorrect results for non-
homogeneous textures. However, our model also naturally pro-
vides a method of testing whether a texture is homogeneous. While
our provided model relies on our experimental evidence that cur-
vature does not have a significant effect on roughness perception,
we note that results may be different for extreme high-curvature
objects where the contact area is small.
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Our model represents a simplification of the mechanosensory
system. In reality, the skin is not a uniform substrate; its structure
is nonisotropic and layered, and it has complex, nonuniform geom-
etry, e.g., fingerprint ridges. While our model appears to work well,
it may be improved by more closely simulating the skin structure
and mechanosensory mechanics.

Our model requires FEM simulations to evaluate a roughness es-
timate for a texture. It would benefit, at minimum, from precom-
puting the roughnesses for the desired set of textures. However,
we believe that one can extract an adequate approximation for the
map f (H ) from running multiple simulations and using machine-
learning techniques to predict the roughness value directly from
height map data.

To aid in the fabrication process, our model and reference stim-
uli could be integrated into an existing tool such as that of Torres
et al. (2015) to provide more precise predictions of tactual rough-
ness when modeling a fabricable object. Fabricating objects with
different roughnesses and other tactual properties, such as weight
or compliance, would create interesting stimuli for future studies
of perception.

Finally, as our model performs significantly better than existing
methods to obtain tactual roughness, it also has broad implications
for other fields of work: in addition to use in psychophysics and
neuroscience, it may also be of use for virtual haptics, robotics tac-
tile perception, and many other fields with an interest in percep-
tion or tactual properties.
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