

Quantification of Two Variables		
State- ment	When True?	When False?
∀х ∀у	P(x, y) is true for every x, y pair	There is an x, y pair for which P(x,y) is false
√∀x∃y Note: These are	For every x, there is at least one y for which P(x, y) is true	There is an x such that P(x, y) is false for every y
not equivalent →∃x ∀y	There is an x for which P(x, y) is true for every y	For every x there is at least one y for which P(x,y) is false
∃x ∃y	There is at least one x, y pair for which P(x, y) is true	P(x, y) is false for every x, y pair

Identity	Name
$A \cup \emptyset = A$ $A \cap U = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws

