
1

INF 111 / CSE 121

Discussion Session
Week 2 - Fall 2007

Instructor: Michele Rousseau
TA: Rosalva Gallardo

Overview
Introduction

Goals
Contact Information
Policies
Card Game

Tools
Eclipse
JUnit

Goals
Discuss details about the assignments
Present tools
Prepare for tests
Review tests and assignments

Contact Information
Rosalva Gallardo

Email: rgallard@uci.edu
Office: DBH 5051
Office hours: Monday 11am - 1pm

Please email me if you plan to drop by
Comments about next discussion

Policies
Discussion

Attend 1 discussion session.
Will not take attendance.
Turn off your cell phone.
Ask questions about assignments.

Assignments
No late assignments.
Bring questions about the assignment to the discussion 
session.
Please do not wait until the last minute to ask questions about 
the assignments.

Policies
Questions

Email, noteboard, office hours.
If the TA considers that an emails’ reply is beneficial for all the 
class, she will reply to all or post it in the Noteboard.
An answer will be provided within 24 hours.

Grading
Always check your partial grades.
If you have questions, please talk to the TA first, then with the 
instructor.

Re-grade
Double check before you bring it.
Within 1 week, accompanied by a clear explanation of what 
needs to be reconsidered and why.



2

Card Game
I want to know about YOU

Write the following information in the card:
Your Name
Underline how you want to be called
Your expectation for the discussion session

Eclipse
(Slides adapted from S.E.Sim)

Eclipse
Eclipse is an IDE (Integrated Development 
Environment)
It’s an open source project 
http://www.eclipse.org
Consortium of companies, including IBM
Launched in November 2001

It’s a framework for software tools (“plug-ins” in 
Eclipse terminology)

Main component is the workbench
Ships with two plug-ins JDT (Java Development 
Tools) and PDE (Plug-in Development Environment)

JDT
JDT – Java Development Tool
Includes a variety of programming tools

Editor with syntax highlighting
• Content Assist
• Quick Fix

Source code searching
Debugger
Refactoring
Code browser

Eclipse Concepts
Resources
Perspectives
Views

Resources in a Workbench
When working with Eclipse, you work with its 
resources
Resources are organized as a file/directory 
structure in the Workbench

They correspond to the actual files and directories in 
the Workspace
There are three different levels on resources:

• Projects
• Folders
• Files 



3

Organizing Resources

project

folder

file

Workbench
Workspace

It is possible to drag and drop resources directly 
between Workbench and the directory structure

Workbench Components
Workbench contains perspectives
Perspective contains views and editors

views

editor

perspective

Perspectives
Perspective defines initial layout of the views in 
the Workbench
They are task oriented, i.e. they contain specific 
views for doing certain tasks:

Java Perspective for manipulating Java code
Resource Perspective for manipulating resources
Debug Perspective for debugging applications

One Workbench window contains many 
perspectives

Opening Perspective
Perspectives can be open 
by:

Clicking on a perspective 
shortcut button
Choosing Window Open 
Perspective… menu option

Available Perspectives
By default, the following perspectives are 
available in the Workbench:

Views…
The main purpose of a view is:

To support editors
To provide alternative presentation and 
navigation in the Workbench

Views can have their own menus and 
toolbars

Items available in menus and toolbars are 
available only in that view



4

…Views
Views can:

Appear on their own
Appear stacked with other views

Layout of the views can be changed by clicking 
on the title bar and moving views

Single views can be moved together with other views
Stacked views can be moved to be single views

Perspectives Available for Java
When developing Java code commonly used 
perspectives are:

Java Perspective
• Designed for working with Java projects

Java Browsing Perspective
• Designed for browsing structure of Java projects

Java Type Hierarchy Perspective
• Designed for exploring type hierarchy

Debug Perspective
• Designed for debugging Java programs

Java Perspective
Contains:

Editor area
Package 
Explorer 
View
Hierarchy 
View
Outline 
View
Tasks 
View

Using Quick Fix
Useful if Java compiler shows errors

Gives options for fixing the errors
Activated through Edit Quick Fix menu option

Error indication

Eclipse
Useful links

Eclipse Glossary: 
http://www.eclipse.org/glossary.html
List of Plug-ins:
http://www.eclipseplugincentral.com/

Eclipse
Demo



5

JUnit
JUnit is an open source testing framework for Java.

http://www.junit.org/

It provides a common and reusable structure that is 
required for developing automate and repeatable unit 
tests for Java classes.
It provides:

A base class called TestCase that can be extended to create 
series of tests for your classes.
An assertion library that can be used to evaluate the results of
the tests.

Junit key classes
TestCase - subclass contains your tests
TestSuite - a composite of TestCases 
and/or TestSuites
TestRunners - to run TestCases or 
TestSuites
TestResult - collects results of multiple 
tests

How to use JUnit

Each test class exercises one class in the system. Each test 
method exercises one method in the system. You also write 
additional test methods to exercise combinations of system 
methods.

Class C {
method m1();
method m2();

}

Class D {
method m3();
method m4();

}

Class CTest extends TestCase {
method testM1();
method testM2();

}
Class DTest extends TestCase {
method testM3();
method testM4();

}

How to use JUnit
Each test method consists of a sequence 
of steps and some checks of the results.
Once you have the unit tests written, you 
run them. You could run them directly 
from main(), but it is easier to use a test 
running utility.

Options: Junit TestRunners or the Ant Junit 
task.

Junit Test Runner Sequence
Test runner is given a list of test classes
For each test class

Create an instance of the test class
• For each test*() method

• Run setUp() method
• Run test method steps and checks
• If a check fails, an exception is thrown and the test 

method fails

Test runner produces a report
Some test runners work interactively

Junit Methods
assertEquals(x,y) - Test passes if x and y are equal

X and y can be primitives or any type with an appropiate equals 
method
Three argument versions exist for floating point numbers

assertFalse(b) - Test passes if boolean value b is false
assertTrue(b) - Test passes if boolean value b is tru
assertNull(o) - Test passes if object o is null
assertNotNull(o) - Test passes if object o is not null
assertSame(ox,oy) - Test passes if ox and oy refer to 
the same object
assertNotSame(ox,oy) - Test passes if ox and oy do 
not refer to the same object



6

JUnit and Eclipse
The recent version of the Eclipse JDT 
already has JUnit Plug-in built in.
The plug-in includes:

A wizard for assisting in creating a test case 
and test suite.
An environment for running test cases.

Testing Hello World with JUnit
Create a class

Create a Test Case

Testing Hello World with JUnit
Make sure Junit.jar is in the Build Path. 
Right Click on Project - > Properties

Testing HelloWorld with JUnit
Run Test
Test Passed Test did not pass

Junit
Demo

HelloWorld
ShoppingCart (Adapted from Junit Primer)

Things to Notice
setUp() method makes some variables that are 
used in the tests

Oficially called “fixtures”
tearDown() frees memory, prevents results of 
one test from affecting the next
Only the first failure in a test method is reported

Do not do too much in a single test
Missing test cases: a new cart should be empty, 
add the same product twice, remove a product 
that was already removed, etc.



7

More Information
Eclipse Help

Help -> Help Contents -> Java Development 
User Guide -> Getting Started -> Basic 
Tutorial -> Writing and running Junit tests

JUnit Home Page
http://www.junit.org

Junit Primer
http://www.clarkware.com/articles/JUnitPrimer.html


