
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 10

Topic 10 2

Announcements

Checkmate
Quiz #1 – Will be returned on Wed
Quiz #2 – Next Monday 10/29/07

Topic 10 3

Previous Lecture
Testing
● Static Analysis

◘Code Walkthroughs
◘ Inspections

2

Topic 10 4

Today’s Lecture

More on Testing
● Static Analysis
● Formal Verification
●Coverage-Based Testing

Topic 10 5

Verification & Validation (revisited)

Verification
“Are we building the product right?” (Boehm)
● The Software should conform to its specification
● testing, reviews, walk-throughs, inspections
● internal consistency; consistency with previous

step

Validation
“Are we building the right product?”
● The software should do what the user really

requires
● ascertaining software meets customer’s intent

Topic 10 6

Quality Assurance : 5 Problems

#1 : Eliciting the Customer’s Intent
●Getting the Specs to meet the “real needs”

#2 : QA is inherently difficult
● Systems can be complex making QA

difficult to perform
◘Air Traffic Control stringent performance
◘Medical Diagnosis System Complex

processing

3

Topic 10 7

Quality Assurance : 5 Problems

#3 : Management Aspects
● Who does what testing?

◘ Are developers involved?
● How are bugs handled?
● What is the reward structure?

#4 : QA Team vs. Developers
● QA lays out the rules
● Uncovers faults

◘ “image of competition”
● Viewed by Developers as Cumbersome

◘ “let me just code”

#5 : Can’t test exhaustively

Topic 10 8

How QA would like the world to be

Design, in formal notation

Executable machine code

Execution on verified hardware

Code, in verifiable language

Complete formal specs
of problem to be solved

Correctness-preserving transformation

Correctness-preserving transformation

Correctness-preserving transformation

Correctness-preserving transformation

Topic 10 9

… but in reality

Design, in mixed notation

Pentium machine code

Execution on commercial hardware

Code, in C++, Ada, Java, …

Mixture of formal and
informal specifications

Manual transformation

Manual transformation

Compilation by commercial compiler

Commercial firmware

4

Topic 10 10

Unit Tests
Developer tests the code just produced
● Needs to ensure that the code functions properly before

releasing it to the other developers

Benefits
● Knows the code best
● Has easy access to the code

Drawbacks
● Bias

◘ “I trust my code”
◘ “I always write correct code”

● Blind spots

Possible Solutions:
● Outside Testers
● Walkthroughs / Inspections

Topic 10 11

Formal Verification

Techniques for proving consistency
between two software descriptions
● to prove consistency of specification
● to prove correctness of implementation

Correctness
Correct with respect to the specification

Topic 10 12

Requirements
Specification

User Needs

Formal Requirements
Specification

Architectural
Specification

Formal Module
Specifications

System Software
Implementation

analyze properties
of requirements

analyze properties
of modules

verify consistency
between specifications

verify consistency
between specification
and implementation

informally vaidate
consistency between
needs and requirements

NOTE: may be multiple
levels of specification
and appropriate verification
at any stage analyze properties

of module interfaces

informally verify
consistency between
formal and informal requirements

Verification with Formal Specs

5

Topic 10 13

Testing with Formal Specifications

Requirements
Specification

User Needs

Formal Requirements
Specification

Architectural
Specification

Formal Module
Specifications

System Software
Implementation

acceptance testing to
validate consistency
between implementation
and user needs

system testing to
verify consistency
between implementation
and formal requirements

integration testing to
verify consistency
between implementation
and architectural specification

unit/module testing to
verify consistency
between implementation
and module specifications

acceptance testing to
validate consistency
between implementation
and informal requirements

Topic 10 14

Formal Verification / Validation
Some shortcomings
● does not show other qualities

◘ Performace, usability, etc..
● May not scale up
● only informal techniques for validating against user needs
● subject to assumptions of proof system
● only as good as formal specification
● Not trivial tedious
● Not always cost effective

Generally used on a part of the system
Example: Mathematically Based Verification

Topic 10 15

Mathematically Based Verification

Must have formal specifications
● Notation must be consistent with mathematical

verification techniques

The programming lang. must have formal
semantics

This is an intensive process but…
● Can verify correctness

Generally,
● Not cost effective for large systems

6

Topic 10 16

Tools for Mathematical Verification

Can it be automated?
● Theorem provers

◘Assist in developing proofs
●Usually work with a subset of the program
●Not completely automated

Topic 10 17

Testing Techniques

So,
We need to find a systematic approach to
selecting of test cases that will lead to:
● accurate,
● acceptably thorough,
● repeatable identification of errors, faults,

and failures?

Topic 10 18

Practical Issues
Purpose of testing
● Fault detection
●High assurance of reliability
● Performance/stress/load
●Regression testing of new versions

Conflicting considerations
● safety, liability, risk, customer satisfaction,

resources, schedule, market windows and
share

Test Selection is a sampling
technique
● choose a finite set from an infinite domain

7

Topic 10 19

How to make the most of limited resources?

Fundamental Testing Questions

Test Criteria: What should we test?
Test Oracle: Is the test correct?
Test Adequacy: How much is
enough?
Test Process: Is our testing
effective?

Topic 10 20

Test Criteria
Testing must select a subset of test cases
that are likely to reveal failures

Test Criteria provide the guidelines, rules,
strategy by which test cases are selected
● actual test data
● conditions on test data
● requirements on test data

Equivalence partitioning is the typical
approach
● a test of any value in a given class is equivalent to a

test of any other value in that class
● if a test case in a class reveals a failure, then any

other test case in that class should reveal the failure
● some approaches limit conclusions to some chosen

class of errors and/or failures

Topic 10 21

Test Oracles
Where does “expected output” come
from?

Critical to testing
Difficult to create systematically
Typically done with a lot of guesswork
●Typically relies on humans
● great dependence on the intuition of testers

Formal specifications make it possible to
automate oracles

A test oracle is a mechanism for
deciding whether a test case execution

failed or succeeded

8

Topic 10 22

What Does an Oracle Do?
Your test shows cos(0.5) =
0.8775825619
You have to decide whether this
answer is correct?
You need an oracle
●Draw a triangle and measure the sides
● Look up cosine of 0.5 in a book
●Compute the value using Taylor series

expansion
●Check the answer with your desk

calculator

Topic 10 23

Test Adequacy

Coverage-Based Testing
● Coverage metrics

◘ when sufficient percentage of the program structure has
been exercised

Fault-Based Testing
● Empirical assurance

◘ when failures/test curve flatten out

● Error seeding
◘ percentage of seeded faults found is proportional to the

percentage of real faults found

Error-Based Testing
● faults found in common are representative of total

population of faults
● Equivalence Partitioning

Tells you when to stop testing

Topic 10 24

Coverage-Based Testing

Flow Graphs
●Control Flow

◘Partial order of Statement Execution
●Data Flow

◘Flow of values from Definition to Variables

Graph representation of control flow and
data flow relationships

9

Topic 10 25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;
if (Y < 20 and then X mod 2 = 0) then

Y := Y + 20;
else

Y := Y – 20;
end if;
return 2*X + Y;

end P;

A Sample Program to Test

Topic 10 26

2,3,4 5

6

9´

10

12

14

T T

F

F 9 T

F

7

TF

9a 9b

Prog P’s Control Flow Graph (CFG)

function P return INTEGER is
begin

X, Y: INTEGER;
READ(X); READ(Y);
while (X > 10) loop

X := X – 10;
exit when X = 10;

end loop;

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

if (Y < 20 and then X mod 2 = 0) then
Y := Y + 20;

else
Y := Y – 20;

end if;
return 2*X + Y;

end P;

1
2
3
4
5
6
7
8

Topic 10 27

All-Statements Coverage

Select test cases such that every
node in the graph is visited
● Also called node coverage

◘Guarantees that every statement in the source
code is executed at least once

Selects minimal number of test cases

1 3 7 82 4 5 6 9 10

10

Topic 10 28

2,3,4 5

6 10

12

14

T
F 9

T

F

7

TF

At least 2 test cases needed

Example all-statements-adequate
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 20, Y = 30)
<2,3,4,5,6,7,9,12,14>

All-Statements Coverage of P

Topic 10 29

All-Branches Coverage

Select test cases such that every
branch in the graph is visited

◘Guarantees that every branch in the source
code is executed at least once

More thorough than All-Statements
coverage
●More likely to reveal logical errors

1 3 7 82 4 5 6 9 10

Topic 10 30

2,3,4 5

6 10

12

14

T
F

9

T

F

7

TF

At least 2 test cases needed

Example all-branches-adequate
test set:

(X = 20, Y = 10)
<2,3,4,5,6,7,9,10,14>

(X = 15, Y = 30)
<2,3,4,5,6,7,5,9,12,14>

All-Branches Coverage of P

11

Topic 10 31

All-Edges Coverage

Select test cases such that every
edge in the graph is visited

◘Takes complex statements into consideration –
treats them as separate nodes

More thorough than All-Branches
coverage
●More likely to reveal logical errors

Topic 10 32

2,3,4 5

6

9b

10

12

14

T T

F

F 9a T

F

7

TF

At least 3 test cases needed

Example all-edges-adequate test set:
(X = 20, Y = 10)

<2,3,4,5,6,7,9a,9b,10,14>
(X = 5, Y = 30)

<2,3,4,5,9a,12,14>
(X = 21, Y = 10)

<2,3,4,5,6,7,5,6,7,5,9a,9b,12,14>

All-Edges Coverage of P

Topic 10 33

All-Paths Coverage

Path coverage
● Select test cases such that every path in

the graph is visited
● Loops are a problem

◘0, 1, average, max iterations

Most thorough…
…but is it feasible?

12

Topic 10 34

2,3,4 5

6

9b

10

12

14

T T

F

F
9a

T

F

7

TF

Infinitely many test cases needed

Example all-paths-
adequate test set:

(X = 5, Y = 10)
(X = 15, Y = 10)
(X = 25, Y = 10)
(X = 35, Y = 10)
…

All-Paths Coverage of P

Topic 10 35

2,3,4 5

6

9b

10

12

14

T

F

9a
T

F
Y

X

X

Y

Y X

X

Y

YX
X

X

T
F

7

TF X

X

P’s Control and Data Flow Graph

Topic 10 36

Subsumption of Criteria

C1 subsumes C2 if any C1-adequate
test T is also C2-adequate
● But some T1 satisfying C1 may detect

fewer faults than some T2 satisfying C2

13

Topic 10 37

all-statements

all-edges

boundary-interior
loop testing

min-max
loop testing

all-paths

all-defs

all-uses

all-DU-paths

all-p-uses all-c-uses

C2
subsumes all-branches

Structural Subsumption Hierarchy

C1

