
1

INF 111 / CSE 121:
Software Tools and Methods

Lecture Notes for Fall Quarter, 2007
Michele Rousseau
Set 7

(Some slides adapted from Susan E. Sim)

Topic 7 2

Announcements

Reminder: Quiz on Monday
● Lectures & Readings

Lecture vs. Lecture Slides

Topic 7 3

Previous Lecture
Finished XP

2

Topic 7 4

Remember?
Iterations to Release Phase

Several Iterations before 1st Release
of Iterations determined in planning
phase
Each iteration takes 1-4 wks to implement
Select stories wisely
● these enforce system architecture for the entire

system
● Customer chooses stories for each iteration

Functional tests created by Customer
● Run at the end of each iteration

At the end of last iteration Production

Topic 7 5

And Productionizing Phase?

End testing before release
New changes may be found
●Decide whether to include in current

release
●Documented for later implementation

Maintenance Phase

Iterations shortened

Topic 7 6

Today’s Lecture

Testing
No Silver Bullet

3

Topic 7 7

Testing

A basic Review

Topic 7 8

Verification and Validation
Informal

Requirements
Informal

Requirements

Formal
Specification
Formal

Specification

Software
Implementation

Software
Implementation

Validation

Verification

Verification: is implementation consistent with requirements specification?
Validation: does the system meet the customer’s/user’s needs?

Topic 7 9

Software Quality: assessment by V&V

Software process must include
verification and validation to measure
product qualities
● correctness, reliability, robustness
● efficiency, usability, understandability
● verifiability, maintainability
● reusability, portability, interoperability,
● real-time, safety, security, survivability, accuracy

Products can be improved by improving
the process by which they are developed
and assessed

4

Topic 7 10

Testing Terminology

Failure: Incorrect or unexpected
output, based on specifications
●Symptom of a fault
Fault: Invalid execution state
●Symptom of an error
● May or may not produce a failure
Error: Defect or anomaly or
“bug” in source code
● May or may not produce a fault

Topic 7 11

1: input A,B

2: A>0?

3: C :=0 4: C := A*B

5: B>0?

6: X := C*(A+2*A) 7: X := A+B

8: output X

Examples: Faults, Errors, and Failures

Suppose node 6 should be
X:= C*(A+2*B)
● Failure/Fault-less error:

- Suppose the inputs are
(A=2,B=1)

– the executed path will be
(1,2,4,5,7,8) which will not

reveal this fault because 6
is not executed
- Suppose the inputs are (A=-
2,B=-1)

– the executed path will be
(1,2,3,5,6,8) which will not
reveal the fault because C = 0

Need to make sure proper test
cases are selected
● the definitions of C at nodes 3

and 4 both affect the use of C
at node 6
- executing path (1,2,4,5,6,8)
will reveal the failure, but only if
B != 0

- (e.g. Inputs (A=1,B=-2))

Topic 7 12

Functional and Structural Testing

Functional Testing
● Test cases selected based on specification
● Views program/component as black box

Structural Testing
● Test cases selected based on structure of

code
● Views program /component as white box

(also called glass box testing)

5

Topic 7 13

Black Box vs. White Box Testing

SELECTED
INPUTS

RESULTANT
OUTPUTS

INTERNAL
BEHAVIOR

DESIRED
OUTPUT

SOFTWARE
DESIGN

“BLACK BOX” TESTING

“WHITE BOX” TESTING

SELECTED
INPUTS

RESULTANT
OUTPUTS

DESIRED
OUTPUT

Topic 7 14

Different Levels of Testing
System Testing
● Defined at Requirements -> Run after integration

testing
Integration Testing
● Defined at Design -> Run after Unit Testing

Unit Testing
● Defined at Implementation -> Run after

Implementation of each unit
Regression Testing (testing after Change)
● Defined throughout the process -> Run after

modifcations

Topic 7 15

Ensure that changes made during maintenance
do not destroy existing functionality

Regression Testing

Permanent suite of test cases
● Saves effort creating test cases
● Provides record of existing functionality

Add new test cases and delete
obsolete ones when necessary

6

Topic 7 16

Unit Testing

A unit test typically tests one class in the system
● A unit test suite contains many test cases
● Each test case typically tests one method in the system

There can be many test cases for each method in the
system
Each test case either succeeds or fails, there is no
gray area
If a test case has an error, that is also a failure
A test or test suite can be said to succeed to a certain
percentage

Topic 7 17

Automated Testing

Idea: Have the computer do more of the work
ofrunning and tallying test cases
How: Using tools, like JUnit
● Benefits

◘ Frequent testing
◘ Regression testing
◘ Adding test cases is easy
◘ Concrete demonstration of effectiveness

In XP, Test-Driven Development says to
create tests first
● Automated Testing

Topic 7 18

J-Unit

Framework for performing unit testing on
Java programs
Test cases are sub-classed from an interface
Available as a stand-alone application and
built intoEclipse
Framework executes the test cases and
records the Results
Displays results in a GUI
Keep the bar green to keep the code clean.”

7

Topic 7 19

More J-Unit Help

Eclipse Help
● Help -> Help Contents Java Development

User Guide - Getting Started Basic
Tutorial

Writing and running
JUnit tests
● JUnit Home Page

http://www.junit.org
JUnit Primer
● http://www.clarkware.com/articles/JUnitPrimer.

html

Topic 7 20

The Mythical Man-Month
Originally Published in 1975
● Fred Brooks
● Based on Experiences From OS/360 in mid-60’s

So why should we care?

Some interesting Stats
● Amazon.com Sales Rank:

#3,201 in Books
#1 in Microprocessor Design
#3 in Systems Analysis & Design
#12 in Software Engineering

Topic 7 21

Who is Fred Brooks?

“Father of IBM OS/360”
1992 Computer Pioneer Award (IEEE)
1999 Turing award winner
2007 Harvard Centennial Medal
Founded UNC-Chapel Hill CS dept

8

Topic 7 22

No-Silver Bullet

“There is no single development, in either
technology or management technique, which
by itself promises even one order-of-
magnitude improvement within a decade in
productivity, in reliability, in simplicity”

Topic 7 23

Essence & Accident

Essential Tasks
● Specifications, design & testing of

conceptual constructs
Accidental (or incidental) Tasks
● Programming & Compiling

The essential tasks are the hard part.

Topic 7 24

Why is building s/w difficult?

“I believe that hard part of building software
to be the specification, design, and testing
of this conceptual construct, not the labor
of representing it and testing the fidelity of
the representation”

It is the nature of s/w – inherent in the
process
Conceptual errors are the problem

9

Topic 7 25

Complexity
Conformity
Changeability
Invisibility

Four Inherent Difficulties

Topic 7 26

Complexity
Very large # of states
Scaling is up is not a repetition of the
same elements in large sizes
Elements interact in a non-linear fashion

Complexity Communication
It is difficult to extend large programs
without creating side effects

Complexity makes management difficult
Personnel turnover can be a disaster

Topic 7 27

Some of Brooks Suggestions

IF an OTS fits – buy it
●Why re-invent the wheel?

Requirements refinement and rapid
prototyping
●Many iterations between client and

designer
Grow – don’t build – software
●Develop incrementally

Train great designers

10

Topic 7 28

Is XP the Silver Bullet?
Requires:

Good Developers
…working well together
Sufficient Domain Knowledge
● Onsite Customer is knowledgeable

Sufficient Technical Expertise
● Knowledge of tools and methods

Good Communication Skills
Collocation
● How do you collocate 4000 programmers?

What if a method or tool is not a SB?

Topic 7 29

Readings

As mention in Wed Lecture
● Brooks: CH 17
● Van Vliet: CH 4

If you need more information on
● Software Process Models Ch 3
● Software Testing Ch 13

