Unless otherwise stated, or otherwise clear from context, all languages are over \(\Sigma = \{a, b\} \). Use the pumping lemma to prove that each of the following are non-regular. On the exam, \(\Sigma \) will be clear.

Recall the pumping lemma for regular languages:

If \(L \) is a regular language, then there is a number \(p \) (the pumping length) where if \(w \) is any string in \(L \) of length at least \(p \), then \(w \) may be partitioned into three pieces, \(w = xyz \), satisfying the following conditions:

- \(|xy| \leq p \)
- \(|y| > 0 \)
- for each \(i \geq 0 \), \(xy^iz \in L \)

1. Let \(L \) be the language \(\{ww \mid w \in \{a, b\}^*\} \)
2. Let \(L \) be the language \(\{a^n^2 \mid n \geq 0\} \) – that is, the set of strings whose length is a perfect square.
3. Let \(L \) be the language \(\{a^ib^k \mid i > k\} \)
4. \(\{a^{10^n} \mid n \geq 0\} \)
5. \(\{a^nb^n c^n \mid n \geq 0\} \)
6. Let \(L \) be the the set of odd-length strings in which the first, middle, and last symbols are the same.
7. **Challenge**: Let \(L \) be the set of odd-length strings where the middle symbol also appears elsewhere in the string.