Lec 17
Undecidability

\[A_{TM} = \{ \langle H, w \rangle : M \text{ is TM, and } M \text{ accepts } w \} \]

Turing - recognizable

How many TMs exist?
- finite \(\Sigma \)
- \(\Sigma^* \) countable

\[A_{TM} \text{ is undecidable} \]

Aside: Quine program

\[\text{FSDC: F} \text{
is a function that for } \langle M, w \rangle \]
\[H(\langle M, w \rangle) \rightarrow H \text{ accepts if } M \text{ accepts } w \]
\[H \text{ rejects if } M \text{ rejects or loop forever} \]

build D, input: \(\langle M \rangle \)
1. Run \(H(\langle M, w \rangle) \)
2. If \(H \) accepts, loop forever
 - else, \(D \) accepts

Review

- Church-Turing Thesis
- High level describe Turing Machines
 - and subroutines
 - Turing - recognizable, Turing-decidable

Set of languages?
\[\Sigma^* \text{? } S_0, S_1, \ldots \]

For any \(S \in \Sigma^* \) binary encoded (bits)

How many \(\phi \) large binary sequences?

\[\beta \leftrightarrow 2^N \leftrightarrow \text{strictly larger than } N \]

I.e. each \(b \in \beta \) is a subset of natural \#s

So uncountably infinite

Conceptual

Where is \(D \)?

<table>
<thead>
<tr>
<th>(\langle M_1 \rangle)</th>
<th>(\langle M_2 \rangle)</th>
<th>(\langle M_3 \rangle)</th>
<th>(\langle M_4 \rangle)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>reject</td>
<td>accept</td>
<td>loop forever</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>loop forever</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>

Contradiction: \(H \) cannot exist

\[???! \]
T_{recog} and $co-T_{\text{recog}}$

$\overline{A_{TM}}$