Review

- Turing Recognizable and co-Turing Recognizable

both: Turing decidable

- Barber Paradox:
 - A town has exactly one barber
 - The barber cuts the hair of exactly whoever does not cut their own hair.
 - Who cuts the barber’s hair?
Does this Turing Machine Accept?

\[A_{TM} = \{ \langle M, w \rangle : M \text{ is a Turing Machine and } M \text{ accepts } w \} \]

- This language is a set of strings
 - Every string in the language is a TM and a string, such that if you run that TM on that string, the result is the TM accepts.

- This is **undecidable**

- Suppose it were decidable. Then \(H \) decides it

- But then I could build \(D \)
 - Input: TM \(M \)
 - Behavior: If \(H(M, M) \) accepts, reject
 - If \(H(M, M) \) rejects, or loops forever, accept

- What happens if I call \(D(D) \)?
The Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle : M \text{ is a TM and } M \text{ halts on input } w \} \]

- Suppose FSOC \(\text{HALT}_{TM} \) is decidable.
- Then \(\exists \) TM \(R \) that decides it.
- // Use \(R \) to create \(S \), which decides \(A_{TM} \) (which we know is undecidable)

\[
\text{Run } R \text{ on } \langle M, w \rangle \\
\text{if } R \text{ rejects } \langle M, w \rangle, \ S \text{ rejects } \langle M, w \rangle \\
\text{else } \text{ run } M \text{ on input } w \\
\text{if } M \text{ accepts } w, \ S \text{ accepts } \langle M, w \rangle \\
\text{else } \ S \text{ rejects}
\]
E_{TM} is undecidable

$E_{TM} = \{\langle M \rangle : M \text{ is a TM and } L(M) = \emptyset\}$

Suppose FSOC that E_{TM} is decidable and I want to decide A_{TM} given input $\langle M, w \rangle$

- Let R be the TM that decides E_{TM}
- // Use R to create S to decide A_{TM} (which we know is undecidable)

- We could run R on M
- If accept, $L(M)$ is empty.
- If reject, we don’t know if M accepts w
\[E_{TM} \text{ is undecidable} \]

\[E_{TM} = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \} \]

Suppose FSOC that \(E_{TM} \) is decidable and I want to decide \(A_{TM} \) given input \(\langle M, w \rangle \)

- Let \(R \) be the TM that decides \(E_{TM} \)
- // Use \(R \) to create \(S \) to decide \(A_{TM} \) (which we know is undecidable)
- Create \(M' \) which has input \(x \)
 - If \(x \neq w \), reject // hard coded
 - Else run \(M \) on \(w \)

\[
\text{Run } R \text{ on } M'
\]

If \(R \) accepts: \(A_{TM} \) accepts \(\langle M, w \rangle \)

Else: \(A_{TM} \) rejects \(\langle M, w \rangle \)
EQ_{TM} is undecidable

$EQ_{TM} = \{\langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$
General strategy: Undecidable proof

Problem: prove X is undecidable

- Suppose I had a TM that decides X
- Pick an undecidable problem Y
- Write a TM to decide Y
 - Must be a valid TM **EXCEPT** it assumes existence of TM to decide X
- But that would decide Y
- By contradiction, no TM for X

I consider “wrong direction” to be major error