Min and Max

- We have an array of n distinct numbers.
- We want to find both – the min and max.
- Brute force method takes $2n - 3$ comparisons.
- Find a way that uses strictly fewer.

Pair up j

\[
\begin{align*}
\frac{n}{2} & \text{ winners } \rightarrow \text{ find max for max } \frac{n}{2} - 1 \\
\frac{n}{2} & \text{ non-winners } \rightarrow \text{ find min for min } \frac{n}{2} - 1 \overbrace{\text{ Comparisons}}^{\frac{3n}{2} - 2}
\end{align*}
\]
Could anyone do better?

- Adversary argument:
 - All queries are made to an adversary (opponent)
 - Adversary is allowed to make up answers
 - But answers must be consistent with some input
- If we compare and find $a < b$, we say:
 - a lost the competition
 - b won the competition
- Every non-max loses at least one
- Every non-min wins at least one
- This is $2n - 2$ units of information.
What should the adversary do?

We compare a and b to gain information.

- If a, b never compared (to ANY key) before?
 - I gain 2 units of information

- If exactly one of them compared before?
 - I gain one if adversary sets answer

- Both compared before, one won at least once?

- Both compared before, both lost before?
How many comparisons can be forced?

- We need to gain $2n - 2$ units of information.
- $c_1 = \#$ comparisons that gave us one unit.
- $c_2 = \#$ comparisons that gave us two units.
- Total units of info available is at least $2n - 2$

$$C_1 + 2C_2 \geq 2n - 2$$

- At most $n/2$ comparisons give us two units

$$-C_2 \geq -\frac{n}{2}$$

$$C_1 + C_2 \geq \frac{3}{2}n - 2$$
Counting Inversions

- i, j are an *inverted pair* if $i < j$ and $A[i] > A[j]$. (the larger element appears earlier in the array)

For example:

```
85  24  63  45  17  31  96  50
```
Counting Inversions

► i, j are an inverted pair if $i < j$ and $A[i] > A[j]$. (the larger element appears earlier in the array)

The following is an $\Theta(n^2)$ time way to count the inversions in an array:

```
count = 0
for i = 1 \ldots n do
    for j = i + 1 \ldots n do
        if $A[i] > A[j]$ then
            count++
return count
```
Counting Inversions Faster: a subproblem

Merge-and-Count

- want to count number of inverted pairs in A,
- we know $A[1 \ldots \frac{n}{2}]$ is sorted, as is $A[\frac{n}{2} + 1 \ldots n]$.
- Can we do better than $\Theta(n^2)$?

| 24 | 45 | 63 | 85 | 17 | 31 | 50 | 96 |

```
Count = 0, i = 1, j = \frac{n}{2} + 1, \text{ declare } T[1 \ldots n]

while i \leq \frac{n}{2} and j \leq n
  if $A[j] < A[i]$
    $T[k] = A[j]$
    Count += \# els left in 1st half
    $j++$
    $k++$
  else:
    $T[k] = A[i]$
    $i++$
    $k++$
```
Finishing the Merge Portion

- We want sorted list when done
- Let’s keep the rest of the array

```cpp
// after while loop
while (j ≤ n)
    T[k] = A[j]; k++, j++;
while (i ≤ n/2)
    T[k] = A[i]; k++, i++;

Copy T to A
return count
```
Counting Inversions Faster

also sorts A when done

Use the algorithm from the previous question

count number of inversions in *unsorted* array

How fast is your algorithm?

$\text{Count} \ (A) \ ?$

if $1 \mid |A|$ "small"

brute force count.
Then sort and return

$C_L = \text{Count} \ (A \ [1 \ldots \ n/2])$

$C_R = \text{Count} \ (A \ [\lceil n/2 \rceil + 1 \ldots \ n])$

$C_m = \text{merge-and-count} \ (A); \ \text{return} \ C_L + C_R$
Running Time for Counting Inversions

if list has one or zero elements then
 return no inversions
Divide into $L = A[1 \ldots \frac{n}{2}]$ and $R = A[\frac{n}{2} + 1 \ldots n]$
// Should this be slices or parameters?
Recursively solve on L; count is c_L
Recursively solve on R; count is c_R
Run earlier subproblem on L, R; count is c_M
return $c_L + c_R + c_M$

How long does this take?

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$
Running Time for Counting Inversions

- Two recursive of size $n/2$, plus local linear work
- $T(n) = 2T(n/2) + n$
The Master Theorem

A common running time for a D&C algorithm:

\[T(n) = aT(n/b) + f(n) \]

(\(a \geq 1, b > 1, f(n)\) is asymptotically positive)

- If there is a small constant \(\varepsilon > 0\) such that \(f(n)\) is \(O(n^{\log_b a - \varepsilon})\), then \(T(n)\) is \(\Theta(n^{\log_b a})\)
- For example, express \(T(n) = 4T(n/2) + n\)

\[
\begin{align*}
 a &= 4 \\
 b &= 2 \\
 f(n) &= n
\end{align*}
\]

\[
\log_b a = 2
\]

\(n\) is \(O(n^{\log_b a - \varepsilon})\)?
\(n\) is \(O(n^{1.9})\)?
\(\smile\) Yes.
The Master Theorem

A common running time for a D&C algorithm: \(T(n) = aT(n/b) + f(n) \)
\((a \geq 1, \ b > 1, \ f(n) \text{ is asymptotically positive}) \)

- If there is a constant \(k \geq 0 \), such that \(f(n) = \Theta(n^{\log_b a} \log^k n) \), then \(T(n) = \Theta(n^{\log_b a} \log^{k+1} n) \)
- For example, express \(T(n) = 2T(n/2) + n \log n \)

\[
\begin{align*}
a &= 2 & b &= 2 & f(n) &= n \log n & k = 1 \\
\log_b 2 &= 1 & \text{is } n \log n & \Theta(n^1 \cdot \log n) \\
\text{So } T(n) & \text{ is } \Theta(n \log^2 n)
\end{align*}
\]
A common running time for a D&C algorithm:

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

\(a \geq 1, \ b > 1, \ f(n) \) is asymptotically positive)

- If there is a small constant \(\varepsilon > 0\) such that
 \(f(n) \) is \(\Omega\left(n^{\log_b a + \varepsilon}\right)\), then
 \(T(n)\) is \(\Theta(f(n))\).

- For example, express \(T(n) = T(n/3) + n\)

\[a = 1 \quad b = 3 \quad f(n) = n \]

\[\log_b a = 0 \]

- Is \(n \) \(\Omega\left(n^{0+\varepsilon}\right)\)?

- So \(T(n)\) is \(\Theta(n)\)
The Master Theorem

\[T(n) = 9T\left(\frac{n}{3}\right) + n^{2.5} \]

\[a = 9, \quad b = 3, \quad f(n) = n \]

\[\log_3 9 = 2 \]

\[n^{2.5} \in \Omega\left(n^{2+\varepsilon}\right) \quad \text{yes.} \]

\[T(n) \text{ is } \Theta(n^{2.5}) \]