The Selection Problem

- Given a list S and numeric k
- Want: if we sorted S, what is S_k?
- Brute force:
 - Sort S in $\Theta(n \log n)$
 - Return S_k
- Can we do better?
Randomized Selection

quickSelect(S, k)

If n is small, brute force and return.
Pick a random $x \in S$ and put rest into:
- L, elements smaller than x
- G, elements greater than x

if $k \leq |L|$ then

return quickSelect(L, k)

else if $k == |L| + 1$ then

return x

else

return quickSelect(G, $k - (|L| + 1)$)

pivot

linear

array:

$L | x | G$
Randomized Selection

► What is the worst-case running time?
\[\Theta(n^2) \]

► What would cause that bad time?
bad pivot (extreme)

► Estimate the expected running time?

Hint: on average, the pivot is the median.

\[\Rightarrow T(n) = 1T(\frac{n}{2}) + \Theta(n) \]

is \(\Theta(n) \)
Deterministic Selection

Instead of picking x at random:

- Divide S into $g = \lceil n/5 \rceil$ groups
- Each group has 5 elements (except maybe g^{th})
- Find median of each group of 5
- Find median of those medians
- Let x be that median.

We call this the “medians of 5” method.
Selecting Median of 5 Example

<table>
<thead>
<tr>
<th></th>
<th>870</th>
<th>647</th>
<th>845</th>
<th>742</th>
<th>372</th>
<th>882</th>
<th>691</th>
<th>341</th>
<th>461</th>
<th>596</th>
</tr>
</thead>
<tbody>
<tr>
<td>989</td>
<td>151</td>
<td>100</td>
<td>729</td>
<td>101</td>
<td></td>
<td>397</td>
<td>825</td>
<td>587</td>
<td>363</td>
<td>283</td>
</tr>
<tr>
<td>595</td>
<td>524</td>
<td>930</td>
<td>259</td>
<td>133</td>
<td></td>
<td>955</td>
<td>620</td>
<td>970</td>
<td>430</td>
<td>280</td>
</tr>
<tr>
<td>839</td>
<td>139</td>
<td>735</td>
<td>590</td>
<td>782</td>
<td></td>
<td>913</td>
<td>378</td>
<td>474</td>
<td>255</td>
<td>739</td>
</tr>
<tr>
<td>875</td>
<td>150</td>
<td>791</td>
<td>779</td>
<td>792</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

742 596 151 397
Deterministic Select

\text{DeterministicSelect}(S, k)

If \(n \) is small, brute force and return.
Pick \(x \in S \) via medians-of-5 and put rest into:
\(L \), elements smaller than \(x \)
\(G \), elements greater than \(x \)
\textbf{if} \(k \leq |L| \) \textbf{then}
\hspace{1em} \text{DeterministicSelect}(L, k)
\textbf{else if} \(k == |L| + 1 \) \textbf{then}
\hspace{1em} \text{return } x
\textbf{else}
\hspace{1em} \text{DeterministicSelect}(G, k - (|L| + 1))
Deterministic Selection

Let’s visualize: how does pivot compare to list?

\[\frac{n}{10} \text{ : Smaller than } x \text{ AND in medians list} \]

\[\frac{2n}{10} \text{ : Smaller than } x \text{ AND in one of those lists.} \]

also \[\frac{3n}{10} \text{ larger than } x \text{ (same argument)} \]

and \[\frac{4n}{10} \text{ I don’t know.} \]
Each column was a group of five.
Each column is sorted
Columns are ordered based on median-of-5
Which cells are in L? G? Either?

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>283</td>
<td>255</td>
<td>133</td>
<td>341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>363</td>
<td>378</td>
<td>259</td>
<td>461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>397</td>
<td>474</td>
<td>524</td>
<td>596</td>
<td>620</td>
<td>735</td>
<td>742</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>691</td>
<td>955</td>
<td>782</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>845</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>882</td>
<td>970</td>
<td>839</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>870</td>
<td>875</td>
<td></td>
</tr>
</tbody>
</table>
Deterministic Selection

- How few elements must be smaller than pivot? \(\frac{3n}{10} \)
- How few must be non-smaller than pivot? \(\frac{3n}{10} \)
- How many could be in either group? \(\frac{4n}{10} \)

\[T(n) \leq T\left(\frac{n}{5}\right) + T\left(\frac{3n}{10}\right) + n \text{ is } \mathcal{O}(n) \]
Integer Multiplication

- Given two n-bit integers X, Y, compute $X \cdot Y$
- Example: What is $13 \cdot 11$?

\[
\begin{array}{c}
13 \\
\times 11 \\
\hline
13 \\
13 \times 13 \\
\hline
143
\end{array}
\]
What is a Computer Anyway?

\[(12 - 1)(12 + 1) = 12^2 - 1^2 = 144 - 1 = 143\]

Example: What is $13 \cdot 11$?

\[
\begin{array}{c}
11 \\
5 \\
2 \\
1 \\
\hline
104 \\
\hline
143
\end{array}
\]

\[
\begin{array}{c}
13 \\
26 \\
52 \\
\hline
143
\end{array}
\]