CompSci 260P
Spring 2023 Lecture 4:
Introducing Complexity
About NP-complete Problems

- In general, NP-complete means:
 - Can certify a “yes” in polynomial space
 - Can verify that certificate in polynomial time
 - Can use it to solve another problem known to be NP-complete

- Informally, NP-complete means:
 - We do not know an efficient solution
 - We do not know that one does not exist

- 1972, Cook-Levin: (effectively) 3-SAT is NP-complete
3-Sat

\[\phi = (x_2 \lor x_3 \lor x_4)(\overline{x_2} \lor x_3 \lor \overline{x_4})(\overline{x_1} \lor x_3 \lor x_5) \\
(\overline{x_1} \lor x_2 \lor x_5)(\overline{x_3} \lor x_4 \lor x_5)(\overline{x_2} \lor x_4 \lor \overline{x_5}) \\
(x_1 \lor \overline{x_2} \lor x_5)(x_3 \lor \overline{x_4} \lor x_5) \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Truth Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>True or False</td>
</tr>
<tr>
<td>(x_2)</td>
<td>True or False</td>
</tr>
<tr>
<td>(x_3)</td>
<td>True or False</td>
</tr>
<tr>
<td>(x_4)</td>
<td>True or False</td>
</tr>
<tr>
<td>(x_5)</td>
<td>True or False</td>
</tr>
</tbody>
</table>

\(n\) Variables
\(k\) clauses
for Ind Set
and 3-color:

\(|V| = ?\)
\(|E| = ?\)
Independent Set

Find an independent set of size 4 in this graph:
Verifier for Independent Set

Certificate: V', a set of vertices.

Verifier:

if $V' \not\subseteq V$ then
 return false

if $|V'| \neq k$ then
 return false

for all edges $e = (u, v) \in E$ do
 if $u \in V'$ and $v \in V'$ then
 return false

return true
Can Independent Set solve 3-Sat?

Given a solution to **Independent Set**, use it to write an algorithm that solves 3-Sat.

The Plan: Build a graph such that:

- The **Independent Set** solver will select one variable from each clause, when given the graph and an appropriate value of k as input.
- Before you use the solver, modify the graph so that x_i and $\overline{x_i}$ won’t both be selected, for any i.
- It is okay to select x_i two or more times, or $\overline{x_i}$ two or more times, as long as you don’t select x_i and $\overline{x_i}$.
Reduction

\[\phi = (x_2 \lor x_3 \lor x_4)(\overline{x_2} \lor x_3 \lor \overline{x_4})(\overline{x_1} \lor x_3 \lor x_5)(\overline{x_1} \lor x_2 \lor x_5)(\overline{x_3} \lor x_4 \lor x_5)(\overline{x_2} \lor \overline{x_4} \lor \overline{x_5})(x_1 \lor \overline{x_2} \lor x_5)(x_3 \lor \overline{x_4} \lor x_5) \]
3-SAT(n variables, k clauses)

for each clause $A \lor B \lor C$ do
 Create 3 vertices // one each A, B, C
 Add edges (A, B), (B, C), (A, C)
for each variable x_i do
 Connect any “x_i” node to all $\overline{x_i}$ nodes
return INDEPENDENT SET(G, k)
Could we get false positives?

Show that, if that graph G has an independent set of size k, then the 3-SAT instance truly has a satisfying assignment.
Could we get false negatives?

Show that, if the 3-SAT instance we have as input has a satisfying assignment, the graph we build will have an independent set of size k.
Use 3-Color to get a truth value assignment on n variables

- Remember, all 2^n TVAs should be possible.
- Running time polynomial plus call to 3-Color
Amend the 3-Color usage to get a satisfying truth value assignment on \(n \) variables. For each clause \(A \lor B \lor C \), add as follows:

- **Example:** if \((\overline{x_2} \lor x_3 \lor \overline{x_4}) \), then \(A = \overline{x_2} \) etc.

1. If \(B, C \) both false, this is false.
2. If \(A = \text{false} \), this is neutral.
3. Add this and if \(A \) \(BC \) all false, no coloring.
4. This is false.