I & C SCI 46 Winter 2023
Lecture 23: QuickSort
QuickSort Step 1: Partition

1. Choose a pivot. \(x \)
2. Place that pivot in the right spot.
3. Pivot the rest of the array.

\[
\begin{array}{cccccccccccccccc}
48 & 41 & 51 & 66 & 84 & 89 & 87 & 68 & 37 & 23 & 96 & 98 & 52 & 14 & 62 & 43 \\
\end{array}
\]
QuickSort

<table>
<thead>
<tr>
<th>48</th>
<th>41</th>
<th>51</th>
<th>66</th>
<th>84</th>
<th>89</th>
<th>87</th>
<th>68</th>
<th>37</th>
<th>23</th>
<th>96</th>
<th>98</th>
<th>52</th>
<th>14</th>
<th>62</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>14</td>
<td>23</td>
<td>37</td>
<td>48</td>
<td>84</td>
<td>89</td>
<td>66</td>
<td>51</td>
<td>89</td>
<td>43</td>
<td>48</td>
<td>52</td>
<td>14</td>
<td>62</td>
<td>43</td>
</tr>
</tbody>
</table>
Running time of QuickSort

▶ What is the worst-case running time?
\[\Theta(n^2) \]

▶ Can you produce the worst-case running time?
\[\text{pivot min/max} \]

▶ So why is it called “QuickSort” then?
Selecting a pivot

Variations of QuickSort change based on pivot selection:

- Deterministic, single-spot.

 - good: easy to compute

- Uniformly at random

- Median-of-3
Average Case Analysis of QuickSort

Suppose

- All permutations equally likely
- All \(n \) values are distinct (for simplicity)
- Define \(S_1, S_2, \ldots, S_n \) as sorted order.

Let \(P_{i,j} \) be probability we compare \(S_i \) and \(S_j \).

\[
P_{i,j} = \frac{\text{#yes}}{\text{#total}} = \frac{2}{|j-i| + 1}
\]
Expected number of comparisons

$$E\left(\sum_{i=1}^{n} \sum_{j=i+1}^{n} X_{i,j} \right) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E(X_{i,j})$$

$$= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j - i + 1}$$

$$= \sum_{i=1}^{n} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$< \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{2}{k}$$

is $\Theta(n\log n)$
Hybrid: Tim Sort

- The fastest sort algorithms are recursive
- Problem: recursion has an overhead

- Solution: