Something More Fun

- I write integers 1, 2, ..., 49, 50 on board
- You repeat until one number left:
 - Select any two distinct a, b on board
 (if same number written twice, can choose for a, b)
 - Erase a, b from board.
 - Write $|a - b|$ on board

Goal: Some odd k in $[1, 49]$

- I wonder:
 - What number(s) could be left when you are done?

Choose 1, $k+1$. Write k off to side
Pair $(2, 3), (4, 5), \ldots, (k-1, k)$
also $(k+2, k+3), \ldots, (49, 50)$
Pairs produce 24 ones. Pair remain, 12 zeroes.
Any $\rightarrow k$ is left.
3. Tiling a $2^n \times 2^n$ chessboard

4. Tiling a $2^n \times 2^n$ chessboard
The n-Queens Problem

- $n \times n$ board, n queens
- Place all n queens
 - None to threaten another

Good placement? No
- Good placement?

- Recursive Approach

 for each viable square in this row
 - place queen
 - update threats
 - next row (recursive)
 - if not solved remove queen (and threats)
Recursive Approach