2 Bipartite Checking

Algorithm to determine if G is bipartite
- G is undirected, connected.

BFS, any start
even layers: gold
odd layers: blue

Claim: If G is bipartite, this demonstrates it
3 Bipartite Checking

If G is not bipartite, can we prove from algorithm?

4 Big Extra Credit Question

- **Input:** any simple graph G
- **Output:** chromatic number of G
- To claim extra credit:
 - Prove running time, polynomial in n and m
 - $O(n^{100000})$ okay
 - $O(2^n)$ is not.
 - Prove it is correct
- Worth an A+ in this class
 Actually worth more than that.
Running time of linear search

```cpp
int linSearch(const std::vector<int> & numbers, int target)
{
    int i;
    int n = numbers.size();
    for(i=0; i < n; i++)
        if( numbers[i] == target )
            return i;
    throw ElementNotFoundException("msg");
}
```

Worst case $\mathcal{O}(n)$

Running time of linear search

```cpp
int linSearch(const std::vector<int> & numbers, int target)
{
    int i;
    int n = numbers.size();
    for(i=0; i < n; i++)
        if( numbers[i] == target )
            return i;
    throw ElementNotFoundException("msg");
}
```

- Does this time change if the vector is sorted?
Running time of binary search

```cpp
int binarySearch(const std::vector<int> & numbers, int target){
    return binarySearch(numbers, target, 0, numbers.size() - 1);
}

int binarySearch(const std::vector<int> & numbers, int target, int low, int high)
{
    if( low > high )
        throw std::out_of_range("msg");
    int mid = (low + high) / 2;
    if( numbers[mid] == target )
        return mid;
    else if( target < numbers[mid])
        return binarySearch(numbers, target, low, mid-1);
    else
        return binarySearch(numbers, target, mid+1, high);
}
```

What is binary search doing?

```
2  4  5  7  8  9  12  14  17  19  22  25  27  28  33

[1, 1000]  [501, 1000]
[501, 749]  [501, 624]
[501, 561]  [532, 546]
[532, 538]  [532, 539]
```
Lower Bounds?

- Potential new solution to \texttt{find-min}
- Arbitrary input vector of size \(n \)
- Better than \(\mathcal{O}(n) \) time.
- Believable? Why or why not?

Which is better? Why?

- Input: an array \(A \) of size \(n \).
- Algorithm 1: \(20n \) operations
- Algorithm 2: \(n^2 \) operations
- Which is better?