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ABSTRACT
Algorithms courses are a core part of many CS programs, but have
received little focus in computing education, lacking statistical data
about how they are generally taught. To remedy this, we present the
results of the first large-scale comprehensive survey of undergradu-
ate introductory algorithms courses at four-year institutions in the
United States. Questions in the survey targeted instructor informa-
tion, course concepts, the ways students are evaluated, challenges
instructors encountered, and instructor envisioned improvements.
We received 87 responses from 34 different states, across a wide
variety of 4-year institutions. The results indicate that algorithms
courses vary dramatically in most surveyed areas.
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1 INTRODUCTION
The study of the design and analysis of algorithms is fundamental
to undergraduate computer science (CS) education [8]. In addition
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to their wide applicability, algorithmic skills are foundational to
improving student programming ability [15].

Educators play an important role in establishing curriculum stan-
dards and ensuring graduates are competent. The ACM Computer
Science Curricula 2013 [8] makes such an attempt for undergraduate
CS education. It provides “realistic and adoptable recommendations”
for 18 knowledge areas, including “Algorithms and Complexity.”
This curricula was formed through a combination of survey data
and and several rounds of community feedback. However, this lacks
detailed (public) data about the content and structure of courses.

It is important to understand the current content and structure
of courses for several reasons. First, it can help establish curricu-
lum standards like those published by the ACM [1, 2, 8]. Second,
the complexity of transferring course credits between institutions
can be reduced when content is aligned and prerequisites are well-
calibrated [3]. And third, it can help inform future curriculum revi-
sions and education research, such as the prioritization of topics
for inclusion in a concept inventory (CI), like one created for data
structures [10]. For more about Computer Science CIs, see [14].

We set out to answer two research questions -What is the cur-
rent content and structure of introductory algorithms courses? and
What associations and trends emerge from the analysis of the content
and structure of algorithms courses? To answer these questions, we
have conducted the first large-scale comprehensive survey of in-
troductory algorithms courses at institutions in the U.S. that offer
a four-year undergraduate degree in CS or a closely related field
(e.g. software design, information technology). We sent the survey
to 411 faculty from across all 50 states who have recently taught
such a course. We received 87 responses. The rest of the paper is
structured as follows - we discuss data collection and survey design
(Section 3), we present quantitative results of our survey (Section 4)
and we analyze our results to obtain additional data-driven insights
(Section 5). Overall we see major divergences in course structure
and content

2 RELATEDWORK
Prior work on algorithms education has primarily focused on identi-
fying student misconceptions. Farghally et al. [4] study misconcep-
tions across a list of algorithm analysis topics, including asymptotic
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analysis and recursive analysis, among others. Shindler et al. [12]
perform a replication study of [19] that targeted misconceptions
about dynamic programming. Özdener [9]’s study identifies stu-
dents’ misconceptions about time-efficiency of algorithms, while
Velázquez-Iturbide [16]’s work addresses misconceptions about
optimization problems and their corresponding algorithms.

Other research related to algorithms concerned effective teach-
ing and evaluation strategies [5, 11, 18] and means to incorporate
responsible-computing content into the course structure [6].

More relevant to our work is the study conducted by Hertz [7].
Their survey was focused on CS 1 and CS 2 course topics, whereas
our survey concerned all algorithms course topics. Similar to our
own work, they found significant divergence between courses.

3 RESEARCH METHODS
3.1 Data Collection
The first step of our data collection process entailed creating a (non-
comprehensive) list of academic institutions to include in the study.
We only included universities in the United States that had a 4-year
computer science (or related) program. We also ensured that each
of the 50 states was represented, at least to some extent.

Once our list of institutions had been constructed, we began ex-
amining the catalog descriptions of undergraduate courses at each
institution in order to identify a suitable course. If the course title in-
dicated the class was introductory and solely an algorithms course
(e.g., “Design of Algorithms,” “Analysis of Algorithms,” “Fundamen-
tal Algorithms,” etc.), we included it. Otherwise, if there was no
such course, we would include another course with “algorithm(s)”
in the title so long as there was evidence that at least one topic
from the ACM’s “Algorithmic Strategies” was included. This condi-
tion was most often applied to “Data Structures and Algorithms”
courses, which were often a terminal algorithmic course.

After creating lists of undergraduate algorithms courses, for each
course, we compiled a list of up to three instructors who had taught
it within the past 2 years. To find the instructors for each course, we
applied a variety of methods. The most common way was through
looking at publicly viewable course schedules which list instructors’
contact information, though other sources were employed, such
as course websites. After finalizing the list of emails, we sent an
invitation to participate in the survey to all instructors in that email
list. Each survey respondent was offered a $25 Amazon gift card
for completing the survey.

3.2 Survey Design
When designing the survey, our goal was to gain insight into both
the course structure and the topics typically taught. The survey
contained two main parts. The first, consisting of three sections,
focused on the organization of the course. These sections ask about
general course details, such as grading breakdowns, dedicated class
section times, programming assignments, written assignments, and
in-class assessments (exams and quizzes).

One of our motivations behind these questions was to determine
emphasis on the theoretical components versus applied components
of the courses. As such, we asked questions about both the content
and number of assignments.

In the second part, based on the core topics from the ACM Com-
puter Science Curricula 2013 [8], we asked where the topic is first
taught (i.e., prerequisite course, the algorithms course in question,
other elective or required courses, nowhere in the curriculum, un-
sure, or other). Multiple core topics under Basic Analysis were com-
bined into the topic “Asymptotic Analysis” to simplify and shorten
the survey length. Similarly, we included an abridged version of the
Proof Techniques section from the Discrete Structures knowledge
area to identify how proofs were integrated into the course. The
“Basic Automata, Computability and Complexity” and “Advanced
Data Structures, Algorithms, and Analysis” sections were preceded
by a question on whether the instructor taught any topics that
could fall under either section and if not, the section was skipped.

Finally, we asked three open ended questions, on issues encoun-
tered, desired course changes, and any other comments.

3.3 Threats to Validity
The most significant threat to the validity of our survey is in the
selection process of courses and institutions. In the first wave, we
selected the initial universities ourselves. As such, the first institu-
tions we reached out to were more often well-known universities.
Our second and third waves addressed this problem by attempting
to be almost fully comprehensive in previously uncovered states
along with a few other states. However, it should be noted that this
means we do not have a perfectly random sample. Secondly, while
“properly titled” introductory courses would always be surveyed,
programs that didn’t have such a course were only surveyed if they
included a topic from “Algorithmic Strategies.” This criterion, how-
ever, may cause some confirmation-bias, since this pre-supposes
that algorithms courses need to cover these strategies.

Another threat comes from the six adjunct respondents. While
adjuncts likely know the course they are teaching very well, it is
possible that they are less familiar with the general curriculum of
the institution as a whole. A survey by the TIAA Institute indicates
around 23% of adjuncts have jobs outside of academia, and 26%
teach at multiple institutions [17]. As such, this could lead to certain
information being omitted or misrepresented.

Finally, there are threats related to doing surveys. All of the
data is given voluntarily by those who responded, which can bias
the sample. There can be errors when filling out surveys. For ours
particularly, we allowed the final two sections to be skipped if the
instructor indicated they did not teach any topic in the section.
It could be that in these cases, the topics are taught in different
locations at these universities. There is also the issue of sample size;
we only received responses from 87 instructors.

4 RESULTS
Our initial list had 615 higher-education institutions. Of these, 495
had a 4-year computer-science adjacent program, and 373 of those
had an applicable algorithms course. From this, we were able to
send out emails to 411 instructors from 302 institutions whose
contact information we were able to find. We were able to gather
responses from 87 instructors across 79 institutions in 34 states.
57 of these responses were from doctoral universities with 36 be-
ing from an R1 university, 12 from an R2 university, and 9 from a
doctoral/professional university as defined by the Basic Carnegie
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Classification [13]. 14 of these responses were frommaster’s degree-
granting institutions, and 16 were from baccalaureate colleges.
These rates mirror the ACM 2013 curricula survey [8]. 70 of these
institutions used a semester system, seven used a quarter system,
and two classes had a term length of 12-13 weeks. As answered by
respondents, of the distinct courses, 70 were upper-division courses,
11 were lower-division, and 2 were indicated as both (by different
respondents teaching the same course).

4.1 Instructor Background
We found that over 90% of instructors were professors, comprising
31 assistant professors, 25 associate professors, and 24 full profes-
sors. 6 respondents were adjunct faculty, and one was a graduate
student teacher. We also asked about their involvement in teaching
in comparison to research. We found that only 11% of instructors
considered themselves more focused on research, with 54% being
more teaching-oriented. Additionally, we categorized the respon-
dents’ research areas into theoretical and non-theoretical1. Of the
82 that did any amount of research, we classified 39 of them as
doing theoretic research.

4.2 Course Structure
4.2.1 General Course Details. Participants were asked to describe
the grading criteria of their courses. We provided categories for
participation, programming assignments, in-class assessments (ex-
ams, quizzes, etc), and written homework assignments2 (Figure 1).
Among these categories, participation and programming assign-
ments typically accounted for the lowest portion of the total course
grade, with nearly 29% of respondents weighting programming
assignments at 0%, and over 55% of respondents weighting partic-
ipation at 0%. In-class assessments, in contrast, were usually the
highest portion of the course grade, with over 26% of instructors
noting that they weighted it at over 60% of the total grade.

For the “other” category, responses varied. There were presenta-
tions, student-made class notes, digital quizzes, reading assignments
(with a flipped-classroom), take-home exams, and some logistical
complications due to different grading systems.

4.2.2 Evaluation of Student Mastery. Among the 81 instructors
who gave non-programming homework assignments, the average
number of assignments was 8.1, with many indicating that they
required proof writing, algorithm design, complexity analysis, and
algorithm tracing. Similarly, for the 85 instructors who gave in-class
assessments, an average of around 4.3 were given, again with the
same five areas as the homework.

4.2.3 Programming Assignments. Of the 66 respondents (76%) with
programming assignments, they assigned on average 5.2 through-
out the academic term. There was significant variation among
which languages were accepted - Java (89%), Python (47%), C++
(36%), and C (13%). 13% accepted any language. 91% of instructors
indicated their assignments including having students implement
algorithms, 82% had assignments where they design their own, and

1We considered theoretical to be any research involving algorithms, data structures,
theory of computation, complexity, or other heavily mathematically-oriented fields.
2One respondent did not use a weighted grading system. They instead had specific
requirements for each grade. They gave >60% to homework, quizzes, and participation

Figure 1: Grading criteria for course categories

21% had assignments that involved plotting the algorithms with
data (eg: the time elapsed at various input sizes).

4.3 Course Topics
In figure 2, we present graphs of all of the results from this part of
the survey. We use the written part of this section to note what we
believe are the highlights.

4.3.1 Algorithmic Strategies. This first part of the Course Topics
section deals with topics concerning algorithm design techniques.
Of the 79 responses3, we observe that nearly all of the responses
cover divide-and-conquer and greedy algorithms with one and four
responses respectively stating the topic is covered in a different
course. The same is true for dynamic programming, with only seven
responses stating they do not cover it. The other topics were taught
in between 24% and 58% of classes.

4.3.2 Fundamental Data Structures and Algorithms (DSA). Multiple
topics related to data structures, like binary search, numerical algo-
rithms, binary trees, hash tables, and sorting algorithms, are taught
in a prerequisite course for 45 to 60% of responses. Moreover, graph
topics, such as graph representations as well as breadth- and depth-
first search, are taught in over 50% and over 60% of the courses
respectively. Notably, shortest-path and minimum-spanning tree
algorithms were taught by over 80% of the respondents.

4.3.3 Proof Techniques. We split the proof techniques section into
two main categories: basic logic (ie: notions of implication, equiva-
lence, converse, inverse), and mathematical proof techniques. Proof
techniques were taught in algorithms by only 11 instructors (13%),
and only 1 taught elementary logic. Both topics were covered in pre-
vious courses by 47 respondents (54%), with 2 indicating only proofs
were taught in a perquisite, and 7 (8%) indicating that logic was
3Due to an early error in the survey, we did not receive responses from 8 instructors
for this section and the Fundamental Data Structures and Algorithms section.
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(a) Algorithmic Strategies (b) Fundamental Data Structures and Algorithms

(c) Basic Analysis (d) Proof Techniques

(e) Basic Automata Computability and Complexity (f) Advanced Data Structures Algorithms and Analysis

Figure 2: Distribution of where Sub-Topics are taught as defined by ACM Computer Science Curricula 2013 [8]
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Figure 3: Breakdown of themes of 80 responses for Q1
(left)4and 46 responses for Q2 (right)

previously taught but not proofs. Most other instructors indicated
that it was taught in a required (but non-prerequisite) course.

4.3.4 Basic Analysis. The basic analysis section of our survey con-
tained several categories, such as asymptotic analysis and recur-
rence relations. The majority of respondents (over 50% or higher
for each topic) indicated all eight topics as being covered in their
own algorithms courses; around 10%-20% of respondents noted that
these basic analysis topics were covered in a prerequisite course.

4.3.5 Basic Automata, Computability, and Complexity. Automata
and complexity theory was skipped by 52% of instructors surveyed.
However, the other 48% cover at least P vs NP, 45% cover NP-
completeness, and 10% also cover the halting problem. Only 2% to 4%
of instructors covered other complexity and theory of computation
topics, but those topics appeared elsewhere in the curriculum in an
elective, prerequisite, or required course.

4.3.6 Advanced Data Structures, Algorithms, and Analysis. Topics
in advanced DSA and analysis were skipped by 47% of instruc-
tors. Out of the remaining 53% of instructors, graph theoretical
algorithms such as topological sort and finding strongly connected
components were common with 73% of instructors who answered
this section covering it (38% overall). Network flow is also fairly
common, covered by 64% of this section’s respondents (34% overall).
Balanced tree-related algorithms were usually covered in prereq-
uisite courses. Instructors who answered this section indicate that
the remaining topics from this section are either typically covered
by an elective course or not covered in the curriculum at all.

4.4 Free Response Questions
In the final section of the survey, we asked respondents three op-
tional free-response questions about difficulties encountered in
teaching their course (Q1), changes they would like to implement
assuming they had full control over their course (Q2), and any other
final thoughts they believed would be important for us to know.
We found commonalities among the responses and categorized
them into common themes with Q1 and Q2 each having 5 different
themes (with 2 sub-themes for Q1), listed in Table 1. Percentage
breakdowns of these themes are presented in Figure 3.

4The stacked bar graph represents responses showing Theme 1 and subthemes 1A and
1B (responses may have exhibited either or both as shown) with the remaining blue

Theme Description
Q1
1 Difficulties regarding students’ insufficient background, par-

ticularly in these areas:
A) Mathematical and proof-writing skills
B) Programming and implementation skills

2 Difficulties in creating problems for in-class assessments and
homework assignments, especially those with answers that
cannot be easily found online

3 Difficulties with illustrating relevance and real-world applica-
tions for algorithms

4 Difficulties with a particular algorithms topic that students
struggled with

5 Difficulties in having students adequately apply algorithm
design techniques to new problems

Q2
6 More programming assignments and focus on implementation

of algorithms
7 Cover less topics, move topics to other courses (existing or

new), or replace topics with other topics
8 Ensure prerequisite courses cover necessary knowledge
9 More emphasis on proofs and mathematical aspects
10 Add lab/recitation section to the course for more chances to

practice problems
Table 1: Themes in instructors’ difficulties with teaching
algorithms (Q1) and in changes instructors’ would like to
implement, assuming full control over course (Q2)

5 ANALYSIS
5.1 Implications of Instructors’ Background
As previously noted, 39 respondents reported performing research
in theoretical computer science or mathematical fields while 47
were involved in other kinds of research or none at all. For the
37 of those 39 theory researchers who gave written homework
assignments, 33 (89%) indicated that they require students to write
proofs, all 37 required algorithm runtime analysis, 35 (95%) required
designing algorithms, and 22 (59%) required tracing algorithms. For
the 44 instructors involved in other fields of research who gave
homework, 28 (64%) required proofs, 39 (89%) required algorithm
runtime analysis, 37 (84%) required algorithm design, and 35 (82%)
required tracing algorithms.

Notably, those involved in theoretical research required proofs
more often and tracing algorithms less often than those not involved
in theoretical research, suggesting some difference in emphasis on
the mathematics of algorithms versus the implementation. This is
also reflected in the in-class assessments, sporting similar trends to
the data regarding assignments. Although, it is significant to note
that only 61% and 49% of theory and non-theory researching instruc-
tors respectively expect students to write proofs in assessments.
Furthermore, the grading criteria for programming assignments,
written assignments, and exams did not significantly differ between
instructors involved in theoretical and non-theoretical research.

section showcasing the percentage of responses that did not fall under 1A or 1B, often
due to plainly stating that prerequisite knowledge was lacking.
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5.2 Themes from Free Response Questions
When teaching algorithms, by far the most common issue instruc-
tors reported facing was insufficient background on prerequisite
concepts, with 54 of the 80 (68%) responses to Q1 exhibiting this
(Theme 1). 40 out of those 54 (74%) made references to students’
weak foundation in mathematics and proof-writing. Only nine re-
sponses (17%) expressed concern with a lack of programming skills
to properly implement algorithms (the final 10 responses (19%) not
elaborating on the prior knowledge students were lacking).

Another concern raised was the assessment of students’ algo-
rithm design skills (Themes 4 and 7). Instructors frequently com-
mented on the difficulty in creating assessments and assignments
for students to apply their knowledge in designing algorithms. A
key difficulty is to come up with novel problems, unique from those
discussed online. Another is that some students are unable to apply
algorithm design beyond problems encountered in class.

Respondents also noted the abstract nature inherent in learning
these topics as a struggle. Themes 5 and 6 illustrate this as in-
structors note students’ struggles in recognizing the importance of
algorithms and their relevance with real-world applications. Some
instructors listed particular algorithmic concepts that students
had trouble with as well, most commonly dynamic programming,
greedy algorithms, and NP-completeness.

Of the 46 responses we collected for Q2, we witness two cat-
egories of themes: those expressing desires to add to the course
in some way, like adding more material, emphasizing particular
topics, or providing more opportunities to apply what they learned
(Themes 6, 9, 10) and those which seek to address the difficulty of
the course by reducing the amount of material covered or ensuring
prerequisite courses cover the concepts needed (Themes 7 and 8).

5.3 Associations Among Survey Variables and
Institution Data

We looked to see if there were any associations between the survey
variables and additional data we collected on the institutions we
surveyed5. We also used our previous categorization of instructors’
research in algorithms or non-algorithms adjacent research as a
variable.We obtained these associations by calculating the Cramér’s
V measure for each pair of variables6.

We found that there are some moderate associations between
variables from the same sections of the survey. We first see this with
the variables from the “Evaluation of Student Mastery” sections
where question types on the homework and exams were correlated
with one another. Likewise, for the Fundamental DSA topic sec-
tion, there are moderate associations between quadratic sorting
algorithms, hash tables, binary trees, and heaps, having Cramér’s V
values in the range 0.18 and 0.55. On the other hand, graph represen-
tations, depth- and breadth-first search, shortest-path algorithms,
and minimum spanning tree algorithms, the most common topics
from the DSA section, have Cramér’s Vmeasures less than 0.13 with
the other topics (and associations between 0.13 and 0.78 amongst

5This includes the institution’s Basic Carnegie Classification, its research activity, and
whether or not the institution was public/private and religious/nonsectarian.
6We note that these associations values do not indicate the kinds of relationships
the variables have and whether variables are positively or negatively correlated with
one another in one manner. We provide interpretations of these associations with the
intention of yielding additional potential avenues of consideration and future study.

the topics). Given these observations, it is possible that the “typical”
DSA topics concern tree traversal and graph algorithms. Further-
more,𝑂 (𝑛 log𝑛) sorting algorithms are the only DSA topic that has
any moderate associations with any Algorithmic Strategic topics,
most notably having an Cramér’s V score of 0.34 with divide-and-
conquer, suggesting 𝑂 (𝑛 log𝑛) sorting algorithms may be covered
to serve as examples for algorithmic paradigms. For the advanced
algorithms topics, they have moderate intra-associations and weak
inter-associations, possibly implying these topics are rarely covered
together. Balanced trees, graph-theoretic algorithms, and network
flow, which show up in a higher percent of algorithms/prerequisite
courses, have less association with the other advanced topics.

We did not find any high associations between institution data
and instructor’s research area and our survey variables, suggesting
that algorithms course structure and topics are not particularly
dependent institution type or professor research background.

6 FUTUREWORK
A more focused survey could expand upon the themes we derived.
Other research could look for and apply solutions to these issues.
Finally, conducting surveys in other areas can further increase our
understanding of the current state of CS education.

7 CONCLUSION
In this study, we found that while instructors often use the term
“algorithms” to refer to a specific course, the actual course being
referenced has a large variation between academic institutions: it
can be oriented around mathematics, programming, or somewhere
in between. Even within these divisions, instructors often select
very different subsets of topics. In addition, instructors regularly
feel students are unprepared for their courses and have a variety of
new directions they wish to take it - whether to focus on certain
course topics or to make the class more or less mathematical.

As educators and researchers, we need to take into account
the diversity in how algorithms courses are taught. Future studies
should keep this in mind, and either make efforts to be applicable
to a variety of courses or be tailored to a specific version of the
course. When interacting with new transfer students or graduate
students, we should be careful not to make assumptions about the
topics covered in prior algorithms courses. Finally, as educators,
we should make use of this heterogeneity to pull elements from
other courses into our own to continue to improve and refine.
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