4. Java language basics: Function

Minhaeng Lee
Review: loop

• Program print from 20 to 10 (reverse order)
 – While/for

• Program print from 1, 3, 5, 7 .. 21 (two interval)

• Make a condition that make true only if a given int variable ‘int a;' is larger than 10 and divided by 3

• Break / Continue?
Tip: Naming rule in java programming

• Usually be kept
• Reserved keyword begins with lower case
 – `new`, `for`, `while`, `import`, `package` ...
• Class begins with upper case
 – `MyClass a;`

• If a word begins with upper case letter?
 – We knows it is `class`!
• Otherwise : purple colored words in eclipse
 – Reserved keywords
Tip: I don’t know what function I have to use!

• I know what class I have to use but I cannot remember a function for that!

• Use “.” after class, or instance

• *Math.*
Function / Method

• Same meaning different wording
• If a Function is in class then we call it as method
• Syntax
 – `<return type> <name>([parameters]) { [statement] }`

• Return type can be any type in java
 – Return value from function
 – `void` : when there is nothing to return
Function example: two number add

```java
public int add(int a, int b) {
    return a + b;
}
```
Static?

• Compile-time vs Run-time
• Indicate memory loading timing
• Usually variable/functions will be loaded to memory when it reached
• static keywords infers
 – The variable/function will be loaded at the beginning of running
• Why does main have static keyword?
Static variable / function

- Static variables and functions are loaded when a program is starting.
- From static object, it is not possible to access normal object because they have different timing of memory loading.
Static variable / function

- In the same manner, it is also not possible to access normal function from static function.

```java
public class TestStatic {
    public static int staticAdd(int a, int b){
        return a+b;
    }

    public int add(int a, int b){
        return a+b;
    }

    public static void main(String[] args) {
        int sum = staticAdd(10, 10);
        int sum2 = add(10, 10);
    }
}
```
Static variable / function

• However, normal function can use static variable / function because static objects are already loaded to the memory
• Memory loading timing of static objects are always earlier than normal object

```java
public class TestStatic {
    static int staticVariable = 10;

    public static int staticAdd(int a, int b){
        return a+b;
    }

    public int add(int a, int b){
        return staticAdd(a, b)+staticVariable;
    }
}
```
Example: Referencing to outside variables

```java
int outVariable = 10;
public int add(int a, int b){
    return a+b + outVariable;
}

static int staticOutVariable = 10;
public static int staticAdd(int a, int b){
    return a+b+staticOutVariable;
}
```
Variable creation and termination

```java
public int minus(int a, int b){
    int tmpvariable = 10;
    int result = a - b;
    return result;
}
```
public static void main(String[] args) {
 int a = 5;
 int b = 10;
 int sum2 = staticAdd(a, b);
 System.out.println(sum2);
}

static int staticOutVariable = 10;
public static int staticAdd(int a, int b) {
 int insideSum = a + b;
 int outsideSum = insideSum + staticOutVariable;
 return outsideSum;
}

Why did I put static keyword in staticAdd function? Can you describe with/without the keyword?
```java
public static void main(String[] args) {
    int a = 10;
    int b = 15;
    noReturnAdd(a, b);
    System.out.println(a);  // Guess the result!
}

public static void noReturnAdd(int a, int b) {
    a = a + b;
}
```
Key input

• Use Scanner library
• Import first (where should we put in our code?)
 – import java.util.Scanner;

• Example – get integer from keyboard
 – Scanner keyboard = new Scanner(System.in);
 – int myInput = keyboard.nextInt();
 – String myString = keyboard.nextLine();

• For other type? Check functions using “.” after keyboard
 – Type: “keyboard.”
 – Check the function list
Loop input processing for interactive programming

Type it and see how it works

```java
public static void main(String[] args) {
    Scanner keyboard = new Scanner(System.in);

    int myInput = -1;
    while (myInput != 0) {
        System.out.print("Give me input!:");
        myInput = keyboard.nextInt();
        System.out.println("Current input!:");
    }
}
```
Loop input processing for interactive programming

Type it and see how it works

```java
public static void main(String[] args) {
    Scanner keyboard = new Scanner(System.in);

    String myInputString = "";

    do{
        System.out.print("Give me input!:");
        myInputString = keyboard.nextLine();
        System.out.println("Current input!:"+myInputString);
    } while(myInputString.length()>0);
    System.out.println("End!");
}
```
Exercise : interactive calculator

• Use *static* keyword to call function from main function

• Make simple interactive calculator

• Scenario
 – 1. choose menu : 1-add, 2-minus, 3-multiple, 4-divide, 5 quit
 • Number input
 – 2. enter two numbers : two times of receiving as integer
 – 3. show results
 – 4. go back to 1
 • Using loop – while or for
Array

• Store multiple data in a single variable
• [] indicates array
• `<Type>[] <variable name> = new <Type>[<size>];`
• Need initialization
 – Use `new` keyword
 – c.f. single variable doesn’t need to do it

• Don’t have to do de-initialization
 – Why?

• Example:
 – Single int : `int a;`
 – Multiple int : `int[] a = new int[10];`
Array - access

• int array : int[] a = new int[10];
• String array : String[] strArray = new String[10];

• Access the first element
 – Index begins 0
 – examples
 • store 10 to the first one : \texttt{a[0] = 10;}
 • print the first one : \texttt{System.out.println(a[0]);}

• Useful property : \texttt{length}
 – Returns the length of array
 – Example : \texttt{a.length}
String division

• Input `string = “10 20 30”;
• I need three integer value 10, 20, and 30.
• How?
 – 1. divide input string into three strings
 • `stringVal.split(delimiter);
 • Ex: `String[] strParts = string.split(“ “);
 – 2. convert each string into integer
 • `Integer.parseInt(stringValue);
Exercise : interactive calculator v2

• Use `static` keyword to call function from main function

• Make simple interactive calculator

• Scenario
 – 1. choose menu : 1-add, 2-minus, 3-multiple, 4-divide, 5 quit
 • Number input
 – 2. enter two numbers from one string input
 • Need to parse from string
 – 3. show results
 – 4. go back to 1
 • Using loop – while or for
Random Number

• Generate random number between 0 to 1.0
 – `Math.random();`

• Generate random number between 0 to N
 – `(int)(Math.random() * N);`

• **Exercise**: Try to print 10 times of randomly generated numbers using loop statement
Exercise : coin gambling

• Make function that return true/false
• Inside of the function, do \textit{random} between 0 to 1, if the value is less than 0.5 then return \textit{true}, otherwise return \textit{false}

• Run 1000 times, count true and false then compute mean of them.
Factorial

• Factorial
 – \(N! = N \times (N-1) \times (N-2) \times \ldots \)

• Define function
 – `public static int factorial(int N){ /* fill me! */ }`

• Exercise: Using loop statement
Recursion

- Call function itself
- Need termination phrase
Recursion Example : Factorial

```java
public static int factorialIter(int N){
    int var=1;
    for(int i = N ; i > 0 ; i--)
        var *= i;
    return var;
}

public static int factorialRecur(int N){
    if(N == 1) return 1;
    else return N*factorialRecur(N-1);
}
```
피보나치 수는 수학에서 아래의 점화식으로 정의되는 수열이다.

\[F_n := \begin{cases}
0 & \text{if } n = 0; \\
1 & \text{if } n = 1; \\
F_{n-1} + F_{n-2} & \text{if } n > 1.
\end{cases} \]

피보나치 수는 0과 1로 시작하며, 다음 피보나치 수는 바로 앞의 두 피보나치 수의 합이 된다.
\(n = 0, 1, \ldots \)에 해당하는 피보나치 수는 (OEIS의 수열 A000045)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946...

이다.
overloading

• To make functions *Same name* but *different body*

• Why?
 – Sometimes, we need make multiple functions have similar name for program simplicity
 – Example: add functions using integer input and String inputs. They should have similar name but different body to process different inputs

• For overloading, *at least one of parameters must be different* to the others
Overloading. When do we need?

```java
public int add(int a, int b){
    return a+b;
}

public int add(String a, String b){
    return Integer.parseInt(a)+Integer.parseInt(b);
}

public int integerAdd(int a, int b){
    return a+b;
}

public int stringAdd(String a, String b){
    return Integer.parseInt(a)+Integer.parseInt(b);
}
```

They have similar function name but parameter types are different.
public int add(int a, int b) {
 return a+b;
}

public int add(int a2, int c2) {
 return a2+b2;
}

public double add(int a, int b) {
 return a+b;
}

public double add(int a2, double b2) {
 return a2+b2;
}
Useful library **Vector**

- Array has size limit (defined at the first time)
- But sometimes, we cannot expect its optimized size
- By using Vector, we don’t have to think about it
 - `Vector<Type> <variable Name> = new Vector<Type>();`
Vector Example

Type it and see how it works

```java
import java.util.Vector;

public static void main(String[] args) {
    Vector myList = new Vector();
    myList.add(10);
    myList.add(15);
    System.out.println(myList);
    System.out.println(myList.get(0));
    myList.set(0, 20);
    System.out.println(myList.get(0));
}
```
Vector Example
Type specified

Type it and see how it works

```java
public static void main(String[] args) {
    Vector<Integer> myList = new Vector<Integer>();
    myList.add(10);
    myList.add(15);
    System.out.println(myList);
    System.out.println(myList.get(0));
    myList.set(0, 20);
    System.out.println(myList.get(0));
}
```

Type cannot be primitive types. Use Integer instead of int, Double instead of double, Float instead of float
Homework 2 : Big number calculator

• How can we store a number over the memory size of variable types?
 – We know the upper-bound of variables
• Store each digit of input number as individual letter
• Then compute add, minus, multi, divide as we’ve learned in elementary school