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ABSTRACT

Dynamic projection mapping (DPM) is becoming increasingly pop-
ular, enabling viewers to visualize information on moving and de-
formable surfaces. Examples include large data visualization on the
moving walls of tents deployed in austere remote locations during
emergency management or defense operations. A DPM system typi-
cally comprises a RGB-D camera and a projector. In this paper, we
present the first fully functional DPM system that auto-calibrates
(without any physical props like planar checkerboard or rigid 3D ob-
jects) and creates a comprehensible display in the presence of large
and fast movements by managing jitter and occlusion by passing
objects.

Prior DPM systems need specific calibration props, manual inputs
and in order to deliver sub-pixel calibration accuracy. Recalibration
in the face of movement or change in system setup becomes a time
consuming process where the calibration prop needs to be brought
back. When rendering content using DPM, errors in calibration are
exacerbated and the noise in the depth camera leads to jitter, making
the projection unreadable or incomprehensible. Occlusion may
disrupt operations completely by jumbling up even the unoccluded
parts of the display.

In this paper we propose key hardware-agnostic methods for
DPM calibration and rendering to make DPM systems easily deploy-
able, stable and legible. First, we present a novel projector-camera
calibration that does not need synchronization of the devices and
leverages the moving surface itself, a counter-intuitive proposition.
We project ArUCo markers on the moving surface and use corre-
sponding detected features of these markers in the RGB and depth
camera over multiple frames to accurately estimate the intrinsics and
extrinsics of both the projector and the RGB-D camera. Second, we
present a DPM rendering method that uses Kalman filtering models
to reduce jitter and predict the surface shape in the presence of short
term occlusions by other static objects. This results in the first DPM
system, to the best of our knowledge, that can auto-calibrate in min-
utes and can render high resolution content like high-resolution text
or images comprehensible even in the presence of fast movements,
deformations and occlusions. We compare and evaluate the accuracy
with prior methods and analyze the effect of surface movement on
the calibration accuracy.

Index Terms: Computing Methodologies—Artificial Intelligence—
Computer Vision—Image and Video Acquisition

1 INTRODUCTION

Dynamic Projection Mapping (DPM) is challenging due to the de-
mands of continuous real-time reconstruction of the moving surface
and low-latency adaptive projection. High-quality DPM depends
on three critical components: (a) projector-camera calibration (i.e.
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recovering intrinsic and extrinsic parameters of the devices) that
achieves subpixel accuracy; (b) a method to capture a changing
shape of the surface accurately in real time; and (c) an accurate
rendering that adapts to the changing shape. Most prior work use
custom solutions to achieve this.

[28, 46, 50] avoid shape capture by using high-speed coaxial
projector-camera systems and [30, 31] use additional custom mark-
ers (e.g. special IR markers printed on the surface). Recently, more
general DPM systems, that do not use any custom solutions, are be-
coming common [12,13]. A consumer projector and an off-the-shelf
RGB-D camera (e.g. Kinect), set up in a non-coaxial manner, is used
to achieve DPM that adapts the projection on dynamic, and even de-
formable, surfaces. An RGB-D camera captures a coarse resolution
registered depth image in addition to a high resolution RGB image
at video rates. The captured depth of the moving deformable surface
is leveraged by the projector to appropriately distort the projection
to conform continuously to the dynamically changing surface shape.

Our goal in this paper is to achieve a high quality and easily
deployable DPM using such general setups. We target applications
where DPM is used to create data visualizations on moving tent
walls in austere locations (e.g. military command and control, emer-
gency management), manipulating the appearance of fabric [34],
and illuminating screens carried by drones to display large-scale
signs and advertisements [15]. To present stable, legible and high-
resolution text and images in such situations requires highly accurate
projector-camera calibration. Even after high-accuracy calibration,
the DPM can deal with challenges of noisy depth data when using
consumer devices. Unlike rigid objects where the shape is known
apriori, DPM on deformable surfaces rely on the depth camera to
reconstruct the changing shape of the surface every frame. However,
the depth data is usually noisy and introduces tiny perturbations in
the reconstructed shape, even if it is completely static. Since the
projection adapts itself to this continuously changing noisy shape, it
creates a jitter that can impede comprehension of projected content
in addition to being simply annoying. Occlusions of the surface,
for example, by a person walking in front of the projected display,
is pretty common in any working situation. However, occlusions
substantially change the reconstructed shape of the surface as the
occluding object gets captured instead of the dynamic projection sur-
face. This results in a significant distortion of the projected content
even in the unoccluded regions, completely disrupting the viewer
experience. Finally, in order to achieve ease of deployment in such
expeditionary situations, the calibration process needs to be simple
and fast. All current projector-camera calibrations use rigid physi-
cal props (e.g. precise checkerboard or 3D patterned objects) with
involved manual intervention that takes time. Recalibration, if the
system components move, needs the calibration prop to be brought
back, and is not simple.

1.1 Main Contribution
In this paper, we present the first high quality DPM system that can
be deployed easily and quickly using automated procedures. The
contributions of this work that make such a system possible are as
follows:

1. Contrary to common intution that calibration processes should
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use static system set up, we propose a novel projector calibra-
tion method that leverages the moving surface to achieve an
accurate and completely automated recovery of the intrinsic
and extrinsic parameters of the projector and the camera. We
project ArUCo markers on a moving surface and use a novel
method that leverages the captured depth and color of the
known projected features to achieve a completely automated,
highly accurate, and fast (around a minute) projector-camera
calibration without the use of any physical props. This does
not need device synchronization and allows quick recalibration
anytime the devices move.

2. Consumer depth cameras capture low resolution depth data
that are often quite noisy. Not only does this create jitter during
rendering, it also impacts the accuracy of the device calibra-
tion. We use a novel 3D plane fitting method that leverages
the planar constraints imposed by the pinhole camera model
to initialize the calibration procedure yielding intrinsic and
extrinsic parameters of significantly higher accuracy.

3. Finally, we present a new content rendering method that han-
dles both jitter and occlusion. For jitter, we employ Kalman
filtering on the depth samples of the surface and smooth them
over time to determine the surface shape. The Kalman filter is
an efficient, recursive filter that uses a series of measurements
over time to produce estimates and predictions of unknown
variables (in our case, the true surface depth). This results in
a comprehensible and perceptibly pleasing display. Leverag-
ing the depth prediction by the Kalman filter, we devise an
algorithm to handle occlusion of the surface by obstructing
objects.

The above contributions result in the first high quality DPM system
that can be deployed quickly; used for high-quality, jitter-free stable
and legible data display in the presence of occlusions; and quick
recalibration in the face of device movements – a system that can be
deployed and used with confidence in expeditionary situations.

2 RELATED WORK

2.1 Device calibration
We discuss the large body of literature for projector-camera calibra-
tion, though not all are focused on DPM. Most prior works use a
RGB camera. Some, like us, use a RGB-D camera (e.g. Kinect)
and is considered as a single unit since the RGB and the Depth cam-
eras are calibrated by the manufacturers to provide registered depth
and color images. Further, there are different types of calibration
methods. In some methods [1,53], projector calibration is dependent
on the results of camera calibration and therefore error in camera
calibration is propagated to the projector parameters. However,
other methods [29, 54] perform camera and projector calibration
independently.

Single Projector-RGB camera System: Single projector-camera
systems usually use structured light scanning (single or multi-
pattern) of a known calibration object to establish pixel corre-
spondences between the projector and camera followed by cali-
bration [1, 7, 10, 11, 22, 29, 38, 44, 53, 54]. In [7, 10, 11, 22, 29], the
calibration object, a checkerboard pattern printed on a planar surface,
is first used to calibrate the camera using Zhang’s method [55]. The
projector is treated like an inverse camera [43] and is calibrated
like a camera but using the projector-camera pixel correspondences
generated from the structured light scan.

Methods that use only planar projection surface [1, 44, 54] need
not rely on structured light scanning to generate pixel correspon-
dences. Instead, they estimate a homography between the camera
and projector using a rigid planar calibration board by pre-warping
the projected image to align with printed fiducials on the calibration
board [1, 44, 54]. Other methods [27, 51, 53] lift the restriction of

a planar calibration object, instead relying on objects of arbitrary
geometry to perform calibration. This also allows these methods to
project on non-planar surfaces.

Single Projector, Single RGB-D camera System: Resch et.al [38]
use structured light scanning and a precise 3D mesh of an arbitrary
object, obtained apriori by a laser scan, to iteratively refine the
calibration parameters of the projector-camera system.

Multi-Projector, Single RGB camera System: Using measured
priors (e.g. aspect ratio, size of radius) for specific non-planar sur-
faces (e.g. vertically extruded surfaces, swept surfaces or spherical
surfaces) [39–42] use a single uncalibrated camera to find the device
parameters in a multi-projector system. The priors help in con-
straining the optimization thereby removing the use of any special
calibration pattern.

Multi-Projector, Single RGB-D camera System: Kurth et.al [23]
use a depth camera to calibrate their multi-projector system used
for dynamic projection mapping. They use a precise 3D mesh of an
arbitrary complex object (e.g. a human bust) recovered via a laser
scan to constrain the optimization process to achieve the parameters
for the devices.

Multi-Projector, Multi RGB-D camera System: In a follow-up
work [24] use multiple depth cameras, each connected to its own ma-
chine, to calibrate a dynamic multi-projector system in a distributed
manner to support a large number of projectors. They identify var-
ious sources of error that cause visual artifacts in a DPM system
and provide a content-aware method that seeks to hide these errors.
During runtime, they use the depth camera connected to the main
server to track the target object and perform DPM.

Multi-Projector, Multi RGB-Camera Systems: Explicit calibration
of devices is not required on planar multi-projection systems and
registration is achieved via homography based methods [3–5]. When
handling multi-projector systems on non-planar surfaces, usually
single projector-camera calibration methods are used to calibrate
different device pairs separately and then connect them in a tree-like
fashion to calibrate all the devices [35–37, 49]. However, errors
creep in due to each device being calibrated separately and getting
sub-pixel accuracy in registration becomes impossible. Further,
anytime the devices are moved, a new calibration has to be performed
bringing in the rigid 2D/3D calibration pattern.

Comparison: [48, 51] are the only works that achieve automated
calibration (without the use of specific 2D or 3D props) of multiple
projectors and RGB cameras projecting on a complex rigid 3D shape.
Our work does the same for moving surfaces while using a RGB-D
camera, enabling auto-calibration and quick recalibration.

Our work focuses on a single pipeline for automated calibration
and rendering for DPM for quick and easy deployment of DPM sys-
tems. The sub-pixel accuracy achieved by our system is unmatched
by any other prior system. Driven by the application of creating
high quality visualizations on inside walls of tents in the presence
of environmental elements (e.g. wind), we have provided several
quantitative evaluations to show that the display created by the pro-
posed DPM system indeed is a practical viable solution for highly
comprehensible displays even in the presence of large and rapid
movements and deformations. All methods including ours, with the
exception of [24], present a content agnostic rendering.

2.2 Occlusion Handling

Methods for occlusion handling for projection mapping displays
differ based on whether the object is static-rigid, dynamic-rigid or
dynamic-deformable. For static-rigid and dynamic-rigid objects
whose the shape is known apriori, multi-projector displays typically
focus on identifying occluders for shadow removal by increasing
the contribution of one or more projectors to compensate for an
occluded projector in an overlapping region. However, for dynamic-
deformable objects, the system must extract the surface shape every
frame which can get affected by an occluder.
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[18,19,47] predict an expected occluded projection and the actual
captured occluded projector to identify shadows and remove them.
However, these systems are not suitable for complex, deformable
surfaces. [26, 33] perform DPM using multiple projectors on a rigid
object of known 3D shape. In order to remove shadows on the object
caused by occlusions, they track occluding objects in the projection
volume using a depth camera and adjust the blend weights of other
projectors to compensate for the blocked projector. Pmomo [57]
detects occluding objects in a single projector DPM system for
rigid objects to cull projection on the occluder for a more realistic
experience.

Flexpad [45] performs DPM on a deformable, non-stretchable
surface that a user can interact with. They use optical surface ma-
terial analysis on the raw IR image from the Kinect to distinguish
skin pixels (e.g. the user’s hand) that may be occluding the surface.
Narita et al. [32] perform DPM on a non-rigid object by printing
a precise deformable dot cluster marker (DDCM) pattern on a sur-
face using IR ink. These dot clusters are extracted, identified and
tracked across frames using a high-speed camera (∼1000fps) and
compensated.

Comparison: Shadow removal is only pertinent to multiple projec-
tor systems. When compared with prior single projector systems that
only detect specific occluders (e.g. skin) or need custom patterns,
our method provides a general solution.

2.3 Jitter Correction

Jitter noise has been addressed in the domain of video captures.
Tiny, high frequency motion caused by unstable camera support
equipment or the user’s hand manifests as jitter which severely
degrades the quality of videos. Therefore, most video stabilization
techniques serve as a post-processing step to remove the jitter while
preserving and smoothing the intentional motion of the camera. They
do so by estimating the motion vectors in an image sequence, which
can be achieved by pixel-based, block-matching or feature-based
algorithms [9].

The Kalman filter has also been used to handle jitter. Jang et
al. [16, 17] use it to remove jitter noise from a sequence of images
captured at various focuses for shape recovery, or shape-from-focus.
Kwon et al. [25] compute motion vectors in an image sequence using
phase correlation and smooth them over time using the Kalman
filter. Yaman et al. [52] use the constant velocity Kalman filter
for smoothing motion vector trajectories for image stabilization.
More recently, some works have used deep learning to stabilize
videos [6, 56].

Comparison: The primary difference between prior works on
jitter reduction for DPM and ours is its content-agnostic nature
and real-time performance inspired by real-time video stabilization
methods [20, 21] using constrained constant velocity Kalman filter.
Our method does not rely on the projected content to compute motion
vectors. It smoothes frames as they come in and does not rely on
future frames. Unlike Bermano et al. [2] that employ Kalman filter to
smooth the relatively constrained movement of facial keypoints for
DPM, we handle large and random movements of an unbridled fabric
in the presence of different speeds of the wind. Furthermore, [2]
use a coaxial projector-camera pair with a very specialized high-
speed camera (≈ 1300 FPS) that result in very small movements in
facial keypoints. Our method achieves this challenging goal using a
consumer-grade camera operating at 30 FPS.

3 METHOD

Our setup consists of a projector and a RGB-D camera positioned to
project on and capture a surface respectively that may be dynamic
and deformable (Figure-1). We use an elastic tendo screen and
use two fans on either side of the screen that can be set to three
different speeds from slow to fast. We assume that the RGB-D

Figure 1: Our setup, comprising a RGB-D camera and a projector
positioned towards a dynamic, deformable surface.

camera provides us with registered RGB image and depth mesh, in
keeping with the norm for consumer RGB-D cameras.

3.1 Background
We model both the projector and camera with a pinhole camera
model extended with radial and tangential distortion. We assume
that the RGB-D camera’s center of projection (COP) is at the origin,
its pose is aligned with the XYZ axis with the principal axis being
along the positive Z axis. Let c ∈ R2 represent the image of the 3D
point d = [X Y Z]T ∈ R3 in the camera image plane. Then d and

c are related by c = Kc ·Λ(c̃) where c̃ = [c̃x c̃y 1]T = [X
Z

Y
Z 1]T and

Kc ∈ R3×3 is the camera intrinsic matrix and Λ(·) ∈ R3×1 is the
lens distortion function. The (3×4) extrinsic parameter matrix is
identity. Mathematically, Kc and Λ(c̃) are given by:

Kc =

⎡
⎣ fx 0 nx

0 fy ny
0 0 1

⎤
⎦ ; (1)

Λ(c̃;Dc) =

[
c̃ ·ρ(c̃)+ τ(c̃)

1

]
; (2)

ρ(c̃) = (1+ k1r2 + k2r4 + k3r6) (3)

τ(c̃) =
[

2k4c̃xc̃y + k5(r2 +2c̃x
2)

k4(r2 +2c̃y
2)+2k5c̃xc̃y

]
; (4)

r2 = c̃x
2 + c̃y

2; (5)

where ( fx, fy) is the focal length, (nx,ny) is the camera princi-
ple point, Dc = {k1,k2,k3,k4,k5} are the distortion coefficients;
(k1,k2,k3) are radial distortion coefficients and (k4,k5) are the tan-
gential distortion coefficients.

We assume the same pinhole camera model for the projector,
and its rotation and translation with respect to the camera to be
Rp ∈ R3×3 and Tp ∈ R3×1 respectively. Let p denote the projector
pixel that illuminates the 3D point d. Then:

d′ =
[
X ′ Y ′ Z′]T

= Rp ·d +Tp (6)

p̃ =
[
p̃x p̃y 1

]T
=
[

X ′
Z′

Y ′
Z′ 1

]T
(7)

p = Kp ·Λ( p̃;Dp) (8)

where Kp,Dp are the projector intrinsic matrix and distortion coeffi-
cients respectively.

3.2 Image Acquisition
Calibration of the project-camera unit requires finding correspon-
dences between 3D coordinate di, the 2D camera pixel ci that images
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Figure 2: (Left) The depth map (in mm), (Middle) the projected image and (Right) the camera image. The corresponding pixels at the corners
of the ArUCo markers between the projector, depth map and camera image are shown by the red and green lines respectively. Markers that
were not detected in the camera image are highlighted in red.

it, and the corresponding 2D projector pixel pi that illuminates it.
Traditional systems usually use multi-frame structured light scan
(SLS) methods to find the correspondences between ci and pi from
which di is deciphered. However, in the proposed method, RGB-D
camera directly provides us the correspondence between di and ci.
Also, we use a pattern akin to single-shot SLS patterns [10, 11] to
link these correspondences to pi.

Our pattern is based on ArUCo markers [8]. Each ArUCo marker
comprises of a black and white square with a unique pattern and ID.
When captured by a camera, an image containing ArUCo markers
can be decoded to find the IDs and the four corners of the markers.
We project a sequence of grids of ArUCo markers with known
IDs and corners onto a dynamic, deformable surface. The RGB-D
camera captures the projected sequence while the ArUCo marker
detection algorithm detects the locations and IDs of the markers in
that image and establishes correspondences between the detected ci,
its corresponding di and the known location of the detected points
in the projector pi (Figure-2).

Each image in the sequence is projected for several frames. Since
the deformable projection surface moves during these frames, we can
obtain a large number of ci → di correspondences even when using
a single grid of ArUCo markers. Across different grids, we design
the location of the corners and the IDs of the ArUCo markers to be
different to increase the number of correspondences even further.
Unique IDs across grids also prevents incorrect correspondences
due to asynchronous projection and capture of the patterns if the
camera and projector are not synchronized. We perform marker
corner detection at sub-pixel accuracy in all the images captured by
the RGB camera and use the depth from the depth camera at the
registered location to establish the correspondence between ci, di
and pi.

3.3 Camera Calibration
Since our camera extrinsic matrix is identity, we need to only deter-
mine the camera intrinsic matrix and distortion coefficients using
the correspondences. Let {ct

i ,d
t
i} denote the i-th correspondence

at time t. Let Kt
c and Dt

c denote the intrinsic matrix and distortion
coefficients at time t. We optimize for Kc,Dc by minimizing the
reprojection error Et

c given by:

arg min
Kt

c,Dt
c

Et
c =

1

2
∑

i
(|ct

i −Kt
c ·Λ(c̃t

i ;Dt
c)|)2 (9)

c̃t
i =

dt
i

Zt
i
=
[
Xt

i /Zt
i Y t

i /Zt
i 1

]T
(10)

The camera parameters are optimized every frame using per-
frame correspondences, initializing the optimization with the param-

eters from the previous frame. For the first frame t = 1, we assume
the distortion coefficients to be zero, and compute the intrinsic ma-
trix K1

c directly from the 2D-3D correspondences. If the camera
API provides an initial estimate of the intrinsics, we only use the
intrinsic matrix and ignore the distortion coefficients. We assume the
optimization for a frame t has converged when any one of the two
conditions are met: (1) the number of iterations is greater than 1000,
or (2) the absolute difference between the reprojection errors in two
successive iterations is less than a threshold, i.e. |Et −Et−1| ≤ Δc.

3.4 Projector Calibration
For the projector, we need to estimate the projector intrinsics and
extrinsics (i.e. rotation and translation with respect to the camera)
both. Let {pt

i ,d
t
i} denote the i-th correspondence between a 2D

projector coordinate pt
i and 3D point dt

i at time t. Let Kt
p,D

t
p denote

the intrinsic matrix and distortion coefficients, and Rt
p,T

t
p denote the

rotation and translation at time t. We optimize for Kp,Dp,Rp,Tp by
minimizing the reprojection error Et

p as

arg min
Kt

p,Dt
p,Rt

p,T t
p

Et
p =

1

2
∑

i
(|pt

i −Kt
p ·Λ( p̃t

i ;Dt
p)|)2 (11)

p̃t
i =

[
X̃t

i /Z̃t
i Ỹ t

i /Z̃t
i 1

]T
(12)[

X̃t
i Ỹ t

i Z̃t
i

]T
= (Rt

p
[
Xt

i Y t
i Zt

i
]T

+Tt
p)] (13)

We optimize the projector parameters using Equation-11 considering
correspondences from each frame separately, moving on to the next
frame when convergence for the current frame is reached. Opti-
mizing likewise across multiple frames averages out random noise
providing an accurate calibration despite noise in the depth camera.

However, Equation-11 is sensitive to initialization of the projector
parameters. Poor initialization can result in the optimization getting
stuck in local minima, resulting in a projection that will align with
the surface only within a narrow depth range. For DPM systems
where the surface may be moving in a large range, this can be
problematic. Therefore, we devise a new method to obtain an initial
estimate of the projector parameters to initialize the optimization in
Equation-11 assuring robust convergence in optimization.

Coarse Projector Parameter Estimation: Pixels on any straight
line in the projector coordinates correspond to a plane in 3D (Figure-
3). Leveraging this property, we fit a plane through the 3D points
corresponding to 2D pixel locations of ArUCo marker corners along
every row, column and diagonal across all grids of markers. Inter-
secting all the planes along rows results in a line whose direction
corresponds to the projector’s X-axis. Intersection of all planes
along columns results in a line along the projector’s Y-axis. Taking
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Figure 3: Illustration of plane fitting through 3D points of ArUCo
marker corners on the surface that correspond to the same projector
pixel rows. Intersecting all row planes gives the X-axis of the
projector. Intersecting all column planes gives the Y-axis of the
projector. The Z-axis is the cross product of the two. The projector
COP is obtained by intersecting all row, column and diagonal planes.

the cross product of these two vectors gives the Z-axis. Thus, we de-
termine the projector orientation R0

p with respect to the camera. The

projector center-of-projection (COP) T 0
p is estimated by finding the

intersection of all the planes along the row, column and diagonals.
Using this initial estimate of the projector orientation and COP, we
compute K0

p , assuming zero distortion.

Projector Parameter Refinement: We begin the optimization
in Equation-11 with this more reasonable initialization. Note that
if the 3D location of the projected points corresponding to markers
along any row, column or diagonal are collinear, it will present a
degenerate case to the plane fitting method. Therefore, this method
will fail for static planar projection surface. In our setup (Figure-1)
using a hanging fabric screen, such a scenario is unlikely.

3.5 Jitter Reduction

Following calibration, we use the recovered system parameters
to adapt the projection to the dynamic, deformable surface us-
ing [12, 13]. At each frame, we find the 3D location of the equi-
distant black markers marking the desired rectangular area of projec-
tion and fit a B-spline to the detected region 3D. Using the recovered
projector parameters, we then warp the projected image by project-
ing the B-spline surface into projector image plane. However, noise
in the depth camera results in small perturbations in the fitted B-
spline surface and the warped projection has jitters i.e. small, high
frequency motion. This jitter is perceptually annoying and, more
importantly, can render the display unreadable or incomprehensible.
Therefore, we employ Kalman filtering on the 3D B-spline surface
to account for the depth camera noise and reduce jitter.

The Kalman filter uses a series of measurements observed over
time and produces estimates and predictions of the system state by
taking into account the uncertainties of the system and the mea-
surements. This results in a more accurate estimate of the system
state than by considering a single measurement only. It consists of
a predict-correct loop. Once initialized, it predicts the system state,
denoted by x ∈ RNx×1 and uncertainties in the prediction at the next
timestep. When a measurement, denoted by z ∈ RNz×1 is received,
it updates (or corrects) the prediction of the current state to produce
a new estimate. Mathematically, the predict step can be written as

x̂t+1,t = Fx̂t,t (14)

Pt+1,t = F Pt,tFT +Q (15)

Figure 4: The flowchart of the proposed system.

where x̂t+1,t is the predicted state vector at time t + 1, x̂t,t is the

estimated state at time t. F ∈ RNx×Nx is the state transition matrix
that extrapolates the current state to the next timestep. P ∈ RNx×Nx

is a covariance matrix and represents the estimate uncertainty. A
higher estimate of uncertainty will cause the Kalman filter to favor
the measurement more than the current state in the estimatiion.
Q ∈ RNx×Nx is the process noise uncertainty.

In the update step, the Kalman filter computes the Kalman gain
which weights the prediction and the current measurement to com-
pute an estimate for the current system state. Mathematically,

Kt = Pt,t−1HT (HPt,t−1HT +Rt)
−1 (16)

xt,t = xt,t−1 +Kt(zt −Hxt,t−1) (17)

Pt,t = (I−KtH)Pt,t−1(I−KtH)−1 +KtRtKT
t (18)

where K ∈ RNx×Nx is the Kalman gain, H ∈ RNz×Nx is the observa-
tion matrix that maps the state vector to measurement vector space
and R ∈ RNz×Nx is the measurement uncertainty while I is the iden-
tity matrix. The subscript t denotes the timestep.

In our case, the measurements z are the 3D points on the surface
from the depth camera that is used to compute the B-spline surface.
Our goal is to compute a more accurate estimate of these 3D points.
Therefore, our system state vector x consist of all the 3D points
used to compute the B-spline surface. We have implemented three
different Kalman filter models based on the assumptions made by
the prediction step: the constant velocity, constant acceleration and
constant jerk. Depending on the model being used, the system state
also comprises the velocity, acceleration or jerk of each 3D point.
The constant velocity model assumes that the predicted location
only relies on the velocity of the 3D point that does not change be-
tween successive frames. The constant acceleration model accounts
for acceleration and velocity to predict the 3D location assuming
that the predicted acceleration remains constant. The constant jerk
model adds the jerk to the prediction, assuming that the predicted
jerk remains constant. These three models therefore have different
system states and state transition matrices. The constant velocity
model has only the location and velocity of the 3D point in the state
vector, while the constant acceleration and constant jerk models
additionally include acceleration and jerk respectively. Irrespective
of the model used, we only use the estimated location from the state
vector at each timestep. The state transition matrix implements the
equations of motion. At each frame, we acquire measurements of
the surface from the depth camera. These measurements are fed into
the Kalman filter which produces a more accurate estimate of each
sampled 3D point on the surface which are then used to compute the
B-spline and warp the content for projection.

3.6 Occlusion Handling
We leverage the Kalman filter prediction of the 3D points on the
B-spline surface during jitter reduction to handle surface occlusion.
We first use methods by [12,13] to detect the 3D location of markers
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(a) Projector reprojection error

(b) Camera reprojection error

(c) Effect of depth variation on projector calibration accuracy

Figure 5: Effect of the surface speed on the calibration accuracy
for (a) projector and (b) camera for different types of projectors.
(c) shows the effect of depth variation on the projector calibration
accuracy.

at the boundary of the projection region and all the 3D points within
the desired boundary and compute the B-spline surface. In occlusion
handling step we identify the region of the surface that is occluded
by detecting the occluded points from the 3D points used for the
B-spline surface. These occluded points are then replaced by the
Kalman filter prediction. Assuming that an occluding object will
always have depth that is less than that of the projection surface,
we compute the minimum depth that was sampled in the B-spline
region in the previous frame. In the current frame, we mask out
any regions whose depth is less than the minimum depth (from the
previous frame) by a certain threshold.

(a) Marker-based surface

(b) DPM outside calibration volume

Figure 6: DPM on (a) a marker-based and (b) a markerless de-
formable surface using our calibration. Note how the projection
remains aligned with the markerless surface in (b) despite moving
out of the calibration volume.

Detecting Occluded Markers: In order to determine which
sampled points are occluded, we first start with the surface boundary.
Our goal is to match each boundary point in the current frame with
the detected boundary points in the previous frame. We do this by
matching each boundary point in the previous frame to the closest
3D point in the current frame. If a boundary marker in previous
frame is not matched, it is labeled as occluded and replaced by its
Kalman filter prediction from the previous frame.

Accounting for global movement: Detecting occluding markers
alone cannot take into account changes to the global position of the
entire surface in the current frame. For example, the surface may
move forward in unison. This global movement may not be correctly
predicted by the Kalman filter and can cause the display to become
distorted. Therefore, we additionally compute a rigid transform
that transforms 3D points in the previous frame to the points in the
current frame in a least-squares sense. For this, we use all the points
– both unoccluded and also the occluded ones that are predicted by
the Kalman filter. We then apply this rigid transform to points in
the previous frame corresponding to occluded points in the current
frame to get an estimate of the occluded 3D points in the current
frame. Though not very accurate, computing a rigid transform is fast
and efficient, does not result in extrapolation artifacts that nonlinear
transforms may exhibit, and does not compromise the real-time
performance of the display.

4 IMPLEMENTATION AND RESULTS

Figure-4 shows the flowchart of our method. First, we calibrate
the projector-camera pair. We project and detect ArUCo markers
in the RGB-D capture to determine the 2D-3D correspondences
for camera calibration. Next, we fit planes through the 3D points
that correspond to the same projector row, column and diagonal
to get a coarse estimate of the projector parameters. Finally, we
refine the projector parameters to get an accurate calibration. With
the calibration parameters, we perform DPM using Ibrahim et al.’s
[12, 13] method, augmenting it with the proposed jitter control and
occlusion handling methods.

We implemented the proposed system in C++. We used
OpenCV’s APIs for detecting ArUCo markers with sub-pixel ac-
curacy and Levenberg-Marquadt optimization to implement our
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Figure 7: Kalman filter smoothing for a stationary 3D point over 250 frames. Note the amount of noise in the data from the depth caemra
(black). While all three models smooth it out, the constant velocity filtering (red) varies the least compared to the other two.

(a) No jitter correction (6.13) (b) Const. Velocity (0.56)

(c) Const. Acceleration (2.77) (d) Const. Jerk (3.83)

Figure 8: Maps of average absolute difference across a number of
successive frames when projecting a static text image on a stationary
projection surface. The average absolute differences are (a) 6.13, (b)
0.56, (c) 2.77 and (d) 3.83. Note how the difference is very low for
constant velocity model shown in (b).

calibration routines. For the camera, we used an Azure Kinect.
We tested our method on three different kinds of projectors - regu-
lar throw (Optoma ML750), short throw (Optoma EH200ST) and
ultra-short throw (Optoma GT5600). The Azure Kinect itself com-
prises of two cameras: a time-of-flight IR/depth camera and an RGB
camera. Although the depth camera resolution coarser than the
RGB camera i.e. (640×576) vs. (3840×2160), its API provides
an interpolated point cloud rendered from the RGB camera view,
similar to other consumer-grade depth cameras like the Intel Re-

alSense Depth Cameras [14]. In our calibration routine, we used 3D
points from this interpolated point cloud. The projector resolution
was (1920×1080). We projected a grid of ArUCo markers for 20
frames before switching to another grid layout.

4.1 Projector-Camera Calibration Accuracy

We tested our proposed calibration method on a dynamic, deformable
surface. The projector-camera system was placed around 864mm
away from the screen. The width and height of the projection was
1270mm and 762mm respectively. This gives us a working volume
of around 1270W x 760H x 865D cubic mm. We placed two fans
on either side of the surface which would generate random waves
and ripples across the surface and tested our calibration for various
speeds of the fans (see Figure-1). This helped us to study the impact
of the movement of the surface on the accuracy of our calibration
technique and the quality of our display. In order to estimate the
surface speed, we took the difference between two successive depth
maps to measure the velocity and took the average value. We quanti-
fied calibration accuracy using reprojection error onto camera and
projector images using the calibration parameters (Figure-5). Note
that the camera reprojection error is less than 0.5 pixel and does not
get impacted by the movement of the surface (see Figure-5b). A
error of less then 0.5 pixel is considered good calibration as per best
practices [29]. Even at the highest speed, our projector reprojection
error is less than 4 pixels – less than 0.4% when considering the size
of the projection image (see Figure-5a). The maximum 3D recon-
struction error is 3.7mm which is less than 0.4% considering the size
of the volume we are operating in. Considering the variation of the
different parameters estimated by the calibration process (including
projector and camera focal length, translation and rotation), we had
an average standard deviation of less than 5%.

Since our method exploits surface movement for projector cal-
ibration, we studied the impact of depth variation in the 3D data
on the calibration accuracy. We captured a calibration dataset with
large movement in depth (≈ 30cm). From this dataset, we selected a
subset of 3D points by enforcing a limit on the amount of depth vari-
ation, performed projector calibration and measured the reprojection
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(a) (b) (c) (d)

Figure 9: Occlusion of a moving surface by a hand moving across it. (a) shows the distorted projection without any occlusion handling. (b)-(d)
Green points are detected points while red points are estimated points due to occlusion. Notice that sometimes, even unoccluded points are not
detected by the camera (points on the right edge in (d)) but our algorithm is able to determine their position accurately.

Figure 10: Average error between 3D points predicted using our oc-
clusion handling method with their ground truth locations at various
surface speeds.

error on this subset. Figure-5c shows the effect of depth variation on
the projector reprojection error. Notice that for low depth variation,
the reprojection error is high (> 3 pixels) and lowers with increasing
depth variation. This is because we get a better coarse parameter
estimation with greater depth variation and more constraints during
the optimization. However, the reprojection error remains largely un-
affected for depth variation greater than 7cm. Therefore, a minimum
depth variation of 7cm is recommended for the calibration.

Finally, we used the calibration parameters generated by our
method to perform DPM on a dynamic, deformable surface. Note
that DPM requires a very high level of calibration accuracy because
the surface geometry is constantly changing. If the calibration does
not accurately match the physical arrangement, then the projection
will deviate from the marked region and show distortions. Figure-6a-
6b shows the DPM display using calibration parameters generated
by our method. Our calibration method is robust and able to generate
calibration parameters that are valid even outside the calibration vol-
ume. Figure-6b shows a user moving a markerless display surface
very close to the projector, well out of the calibration volume, which
was approximately 85 cm away from the projector. Notice how the
projection still remains well aligned within the surface using our
calibration parameters. Note that methods like Moreno et al. [29] are
not able to achieve this level of accuracy since their calibration pa-
rameters are valid for a small depth range. As the surface moves out
of this range, the projection starts to misalign. In our setup, Moreno
et al.’s method showed a 12% deviation from the marked region
compared to at most 1% deviation using our method. This high cali-
bration accuracy also enables high projection accuracy even when
the surface goes significantly out of the calibration volume, whereas
Moreno et al.’s calibration results in an additional 5% deviation.

As for the number of frames used for the calibration, we did not
see any significant improvement to the calibration accuracy for more
than 25 frames. In general, we capture around 15-25 frames for a
successful calibration irrespective of the surface speed, which takes
approximately 30 seconds to complete.

4.2 Jitter And Occlusion
The results with jitter and occlusion corrections are visibly less
jittery compared to the display generated using the raw depth mea-
surements. Figure-7 shows how the three filter types smooth out
a jittery trajectory of a stationary 3D point. Figure-8 shows the
average absolute difference maps over successive frames for each
model when projecting static content on a stationary surface.

Figure-9 shows the occlusion of a rapidly moving surface by a
hand. Notice how the projection gets severely distorted without
any occlusion handling. However, our occlusion handling algorithm
estimates the locations of the occluded points reasonably well to
keep the projection coherent. Also notice that some points may not
get detected by the camera even though they are unoccluded (see
Figure-9d). These points are treated as occluded points and our
algorithm estimates their positions.

To evaluate the accuracy of our occlusion handling method, we
programmatically occluded some surface markers that were detected
by our algorithm, estimated their locations using our occlusion
handling method and then computed the distance from their true lo-
cations. We computed the average distance over multiple frames for
several points. Figure-10 shows the error between the true locations
and the estimated locations using our method for different surface
speeds. Note that the error for a static surface is 1.2mm, which is
not perceptible to viewers. With higher surface speeds, the error in-
creases, reaching a maximum of 7.5mm when the surface movement
resembles a strong gust of wind. Even at such high speeds, the mean
error is less than a centimeter and viewers do not perceive it in the
final display.

5 SUMMARY

In summary, we present the first work creating a stable, legible
and easily deployable DPM system on dynamic and deformable
surface using a completely automated projector-camera calibration
and rendering with Kalmar filter based occlusion and jitter removal.
In the furture we plan to perform user studies to understand the
extent of legibility achieved. We also plan to extend our work to
multiple tiled projectors on dynamic deformable surfaces to create
large seamless displays.
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