Chapter 4

Reading Headers and
Calling Functions

Computer Science is a science of abstraction —creating the right
model for a problem and devising the appropriate mechanizable tech-
niques to solve it.

Al Aho and Jeffrey Ullman

CHAPTER OBJECTIVES

Learn how to understand functions by their headers and semantics
e Learn how to match arguments to their parameters in function calls
e Learn how to call functions and call methods (and their differences)
[]
[]

Learn the fundamental equation of object—oriented programming
Learn functions (e.g., input/output) defined in modules and the str class

4.1 Introduction

Functions are the most important programming language feature in Python.
Of the four types of objects that represent all aspects of Python programs (i.e.,
modules, values, functions, and classes) all relate to functions: module and
class objects define functions in their namespaces, function objects represent
functions directly, and value objects often call methods (a kind of function used
in object—oriented programming). As with other important features in Python,
we will learn about functions using a spiral approach: we will learn some basic
material about calling functions now, and as we learn more about Python in
general, we will learn more about functions. Because functions are so important
in Python, most chapters will explore some interesting use of functions and/or
introduce some interesting new language feature related to functions.

In this chapter we will learn how to read and understand function headers,
and how to call functions (and methods) according to their headers. In the
process, we will discuss the distinction between parameters and arguments,
and Python’s rules for matching them. We will illustrate these general topics
with actual Python functions imported from a variety of modules as well as
functions defined in the int and str classes. In later chapters we will learn
how operators are defined in terms of functions, how to define functions in
modules, and how to define classes that define functions.

93

Functions are the most impor-
tant language feature in Python

This chapter covers reading and
understanding function headers,
and how to call functions (includ-
ing how to match arguments to
parameters)

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS o4

Functions embody one important form of abstraction: the name of a func-
tion abstracts/hides the complexities of the Python statements that define the
functionﬂ To call/perform a function, we need to know only its name and the
values it needs/uses to compute its result. In this chapter we will focus on
how to understand functions defined in modules and classes that we import,
and how to call these functions; in later chapters, after we learn more Python
statements, we will learn how to define functions using these statements in their
bodies.

4.2 Function Headers

We characterize a function by its input (the value(s) it needs to compute the
function) and it output (the value that is the result of the computation). In fact
we will discuss three different ways to characterize functions, each emphasizing
a different aspect of the function: headers, semantics, and bodies. As a concrete
example, we will characterize the distance function that computes the distance
between two points in the plane, using the x and y coordinates of each point.

In the process, we will also start to become familiar with three interrelated
technical terms: argument, parameter, and returned result. An argument
is a value (any object) supplied to a function as an input; arguments are also
supplied to operators, although in that context they are often called operands.
A parameter is a name that the function defines (in the namespace of a function
object) to store a reference to an argument, so the argument can be referred to
while computing the function. We explore matching or passing arguments to
parameters: each parameter is added to the namespace of the function and is
bound to its matching argument. Finally, a function returns a reference to a
value (any object) that is the result of its computation.

e The Header (form) of a function specifies the name of the function and
the name of each of its parameters. Each parameter name can be followed
by an optional annotation of its type and an optional default value; the
header can also optionally specify -> followed by the type of the result
returned by the function. This information also communicates the num-
ber, order, and type of parameters. The header for distance is:
distance(x : float, y : float, x_ref : float = 0.0, y_ref

e The Semantics (meaning) of a function specifies the relationship be-
tween the arguments that are the inputs to a function call and the result
returned by the function as its output. The semantics that characterize
the distance function, in English, are: distance computes the euclidean
distance between the point (x,y) and the point (x_ref,y_ref) specified
by the arguments matching these parameters (with default values of 0.0
for the last two parameters if their matching arguments are omitted).

e The Body of a function specifies the Python statement(s) that implement
the function’s semantics. The body of the distance function is a single
statement: return math.sqrt((x-x_ref)**2 + (y-y_ref)**2)

1This is similar to how the left-hand side name of an EBNF rule defines a complex control
form on its right—-hand side. In EBNF we use the name of the rule as a shorthand for its
control form in the right—hand side of other rules. In Python we use the name of the function
to call the function and compute its result by executing all the statements in its definition.

: float =

A function name abstracts/hides
the details of its implementation:
we can call/perform a function
by knowing only its name and the
values it operates on

We characterize functions by
their headers and semantics:
specifying what information goes
into it what information comes
out of it

When a function is called Python
binds the parameters (names) in
its header to the arguments (val-
ues) in the call, and computes
the result (value) it returns based
on these arguments

0.0) —> float

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS %)

To Call a function, we specify the name of the function and the arguments
on which the function computes. We will soon explore in detail how Python
matches the argument values in a function call to the parameter names in its
header, discussing matching by position, by name, and including the use of the
default arguments for parameters specified in the header. For example, one
call of the distance function is distance(3.0, 5.0, 1.0, 1.0) which com-
putes the distance from the point (3.0,5.0) to the point (1.0,1.0). Notice
that the function header and the function call both enclose comma-separated
information inside a pair of open—/close-parentheses.

In this chapter we will focus on how to read and understanding function
headers, and how to call the functions they describe. Of course, we also need
to know the semantics of a function to understand when to use it. We typically
write the semantics in English, mathematics, pictures, or whatever provides a
short and unambiguous explanation of the relationship between the arguments
on which a function call operates and the result that a function call returns.
We defer our study of function bodies, until we learn more about the Python
statements used in their definitions. But as a preview, here is how we might de-
fine the distance function in Python, including a triple-quoted comment that
documents this function and shows some sample arguments and the results that
distance computes, in a form similar to that which we saw for the interpreter:
e.g., the triple-chevron prompt >>> with the returned result on the next line.

header and a
both specify
information

A function
function call
comma-separated
inside parentheses

Although we will focus on
reading/understanding function
headers and calling their func-
tions correctly, this paragraph
shows one Python definition of
the distance function

:float = 0.0)

and the point
parameters (with

each parameter

1 def distance(x float, y float, x_ref float = 0.0, y_ref

2 nnn

3 Computes the euclidean distance between the point (x,y)

4 (x_ref ,y_ref) specified by the arguments matching these

5 default values of 0.0 for the last two parameters, if their matching

6 arguments are omitted).

7 >>> distance (0.0, 0.0) #use default values for x_ref and y_ref
8 0.0

9 >>> distance (0.0, 0.0, 1.0, 1.0) #supply arguments for

10 1.4142135623730951

11 >>> distance(’a’,’b’,’c’,’d’) #violation of the header’s type annotations
12 Traceback (most recent call last):

13 .

14 TypeError: unsupported operand type(s) for -: ’str’ and ’str’

15 e

16

17 return math.sqrt((x-x_ref)**2 + (y-y_ref)*x*2)

The rest of this section presents the EBNF for function headers, along with a
few examples. Then, the next section explains how we use our knowledge of a
function’s header to write correct calls to the function: specifically, how the ar-
gument information in a function’s call is matched to the parameter information
in a function’s header.

Headers document functions by specifying information about their names,
parameters, and return value, using the following EBNFH When we learn to
define functions, we will see a very similar EBNF rule as a major part of the
function_definition EBNF rule.

20mitted from this EBNF description: combined dictionary parameters and annotations
that are arbitrary objects, not just objects representing types.

We start our study of function
headers by examining the EBNF
rules for writing them

Headers document functions
with their names; their param-
eter names, types, and default
arguments; and the function's
return type

-> float:

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 96

EBNF Description: function_header

int|float|imaginary|bool|str|bytes|NoneType|object| any other imported/defined type/class

type_name =

annotation < :type_name

default_argument <= =expression

parameter < namelannotation|[default_argument] | *[name[annotation]]

function_header < qualified_name([parameter{, parameter}|)

The type_name rule includes all the type/class names we know and will learn;
when we use the name object as a function_header it means a reference to
any type of Python object. There are two special syntax constraints for func-
tion_header that pertain to the * option in the parameter rule: the * can appear
by itself or optionally be followed by a name:

1. We can use the second option in the parameter rule at most one time.

2. All the parameters that discard default_argument must appear before all
the parameters that include default_argument, although both can appear
in any order after a * parameter.

We could encode these requirements in a more complex EBNF rule, but deem
it better to write a simpler EBNF rule here and supply this constraint verbally.
We must pay attention to these two rules only when we start writing our own
functions, because all the functions we study from the standard Python modules
already satisfy these requirements.

An optional annotation indicates the type of the argument that must match
the type specified for that parameter. An optional default_argument indicates
the value that will match that parameter, if no argument explicitly matches it.
The * alternative in the parameter rule specifies a special kind of parameter
that can match multiple (zero or more) arguments. Although parameters often
specify type annotations and default arguments, they may omit this informa-
tion. For example, without any of these options, we could write the header of
the distance function as just distance(x, y, x_ref, y_ref)

Below are six simple but illustrative examples of functions and their headers.
These descriptions also include a brief semantic description of each function,
to make each more understandable. The next section will show and discuss
actual function calls for these functions, further illustrating their headers and
semantics. Good names for functions and parameters can greatly aid us when
we are trying to understand a function and pass the correct arguments to it.

e math.factorial(x : int) -> int
defines the header of the factorial function that is defined in the math
module. It specifies that this factorial function has one int parameter
and returns an int result.

Semantically, it returns z! (the product 1x2x...xz). Note that the name
x is generic, indicating there is nothing special to communicate about it:
other simple generic names for int parameters are i, n, etc.

e random.random() -> float
defines the header of the random function that is defined in the random
module. It specifies that this random function requires zero/no parameters
(discard the option in function_header) and returns a float result.

Semantically, it returns a random number as a result, whose value is uni-
formly distributed in the interval [0, 1) meaning the value of the returned
result is always > 0 and strictly < 1.

There are two syntax constraints
related to parameters, not speci-
fied in the EBNF

All functions already defined in
Python modules satisfy these
two syntax constraints

Annotations and default argu-
ments are optional; * specifies
a special parameter that can
match multiple arguments

Six examples of function headers
and their semantics; good names
can help us understand functions
more easily

If a function has no parameters
in its header, we call it with no
arguments, but the parentheses
are always present in a function
header and its call

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS o7

e distance(x : float, y : float, x_ref : float = 0.0, y_ref :float = 0.0) -> float

defines the header of the distance function. It specifies that this distance
function requires four float parameters (the last two of which specify de-
fault_arguments) and returns a float result.

Semantically, it returns the euclidean distance between the point at coor-
dinate (x,y) and the point at coordinate (x_ref,y_ref).

e builtins.print(*args : object, sep : str = ’> ’, end : str =’\n’) -> NoneTypeE|

defines the header of the print function that is defined in the builtins
module (and thus automatically imported into the script and all other
modules). It specifies that this print function has one special * param-
eter that matches zero or more object values, followed by two more str
parameters that specify default arguments, and returns a NoneType re-
sult: which means it returns None because that is the only value in the
NoneType class.

Semantically, it prints on the console all values matched/passed to *args,
printing the sep value between each pair of values and printing the end
value at the end: the default argument ’\n’ is an escape sequence that
means advance to the next line. The print function returns no interesting
value: its purposes is to affect the console by printing information there;
but all functions must return some value, so print returns the value None.

e builtins.str.find(self : str, sub: str, start : int = 0, end :

defines the header of the find function that is defined in the str class
that is defined in the builtins module. It specifies that find requires two
str parameters and two int parameters (which specify default_arguments)
and returns an int result. Although the end parameter is annotated by
the type int, it also works correctly when passed the NoneType value
None, its default argument. The parameter name self has a special
meaning that we will explore when we discuss calling methods.

Semantically, if all the characters in sub occurs in a sequence in self
between indexes start and end+1 (where None for end means there is no
end value that limits the ending index), this function returns the lowest
found index; otherwise it returns -1. Indexes in Python start at 0, not 1.

e builtins.str.strip(self : str, remove : str = ’ ’) -> str
defines the header of the strip function that is defined in the str class
that is defined in the builtins module. It specifies that strip requires
two str parameters (the last of which specifies a default_argument) and
returns a str result.

Semantically, strip returns a string containing the characters in self in
the same order, but with all the characters in remove stripped from the
front and rear (not appearing in the string).

Regardless of the semantics of these functions, their headers specify all the
information we must know to call them correctly. When we explore calling
functions in the next section, we will learn how Python reports errors in calls
to functions in which the arguments don’t correctly match their headers: as
you might expect, Python raises an exception in such cases.

3 The print function actually has a fourth parameter specified by file = sys.stdout that
specifies where to print its information. Its default argument, the console, is used frequently.

int = None) -> int

A function header supplies all the
information needed to write a
correct function call; Python re-
ports incorrect calls by raising an
exception

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 28

SECTION REVIEW EXERCISES

1. Write headers for each of the functions described below. Specify appropri-
ate names with annotated types based on these descriptions; don’t write
any default arguments.

a. A function that counts the number of primes in a range between two
integers, exclusive; for example there are 2 primes between 15 and 20: 17
and 19 are both prime.

b. A function that determines whether or not two points lie in the same
quadrant; each point is specified by two float values representing its x
and y coordinates.

c. A function that determines whether or not two lines intersect; each line
is specified by two float values: its slope and its Y intercept.

d. A function that determines the majority value among three bool val-
ues: at least two must have the same truth value value (maybe all three).
e. A function that selects those characters from one string that are spec-
ified in another (discarding the others); for example, when selecting from
’Able was I, ere I saw Elba’ using ’aeiou’ the result returned is
’AealeelaEa’, where case is unimportant for the selection process.

f. A function that determines the number of fractions between two inte-
gers (inclusive) whose numerator and denominator are no larger than a
third integer; for example, the number of fractions between 2 and 4 whose
numerators and denominators are no larger than 5 is 5: 2/1, 3/1, 4/1,
4/2,5/2, when the fraction 2/1 is considered different than 4/2.

g. A function that interleaves characters in two strings; for example, when
interleaving ’>abcd’ with *wxyz’ the result is ’awbxcydz’.

ANSWER:
a. count_primes(low:int,high:int)->int
b. same_quadrant(x1:float,yl:float,x2:float,y2:float)->bool

c. intersect(slopel:float,y_interceptl:float,slope2:float,y intercept2:float)->bool

d. majority(bl:bool,b2:bool,b3:bool))->bool

e. select(text:str,selections:str)->str

f. number_of factions(low:int,high:int,max:int) -> int
g. interleave(sl:str,s2:str) -> str

2. What syntax constraint is violated by the following header: f(x=1,y)

ANSWER: Omitting the annotations for the parameter and return types
is allowed, but rule 2 (after the EBNF rules) is violated: a parameter
without a default argument appears after a parameter specifying a default
argument. The next section shows why this is problematic.

4.3 Function Calls: Matching
Arguments to Parameters

All function calls match/pass their arguments to the parameters defined in that
function’s header, compute the result of the function, and return that result.
Function calls specify their arguments by using the following EBNFEI

4Omitted from this EBNF description: combined dictionary parameters. Calls match
headers, so for now both omit the same information from their EBNF.

The syntax for function calls is
similar to the syntax for function
headers

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 99

EBNF Description: call (and extending expression)

expression < literal | qualified_name | call

argument < [name=|expression

function_call < expression([argument{ , argument}])
method_call < expression.name([argument{, argument}])
call < function_call | method_call

In this EBNF, both function calls and method calls start with an expression.
For function calls, this expression is typically a qualified name that refers to a
function object defined in some module: e.g, math.factorial assuming import
math, or factorial assuming from math import factorial, or fact assum-
ing from math import factorial as fact. For method calls, this expression
is typically a qualified name that that refers to a value object and then (after
the dot) refers to a function object defined in its class: e.g, s.find, assuming
we defined s to refer to some str object and find is defined in the str class.

When we write a function_call or method_call, the required matching paren-
theses tell Python to call the function or method object specified right before
them. Inside these parentheses, each argument is an expression, optionally
preceded by name= where name must be the name of a parameter in the spec-
ified function’s header. In this section we discuss calling only functions and
how to match their arguments to parameters. In the next section we extend
our knowledge to calling methods, which are special functions governed by the
fundamental equation of object—oriented programming.

Before exploring the argument—parameter matching rules themselves, we first
classify arguments and parameters, according the options they include.

e Arguments

— positional-argument : an argument not preceded by name= option
— named-argument : an argument preceded by name= option

e Parameters
— name-only parameter: a parameter discarding default_argument
— default—argument parameter: a parameterincluding default_argument

When Python calls a function, it defines (in the namespace of the function ob-
ject) every parameter name in the function’s header, and binds to each (just
like an assignment_statement) the argument value object matching that param-
eter name. In the rules below, we will learn how Python matches arguments
to parameters according to three criteria: positions, parameter names, and de-
fault arguments for parameter names. Here are Python’s rules for matching
arguments to parameters.

M1. Match positional-argument values in the call sequentially to the parame-
ters named in the header’s corresponding positions (both name—only and
default—argument parameters are OK). Stop when reaching any named—
argument in the call or the * parameter in the header.

M2. If matching a * parameter in the header, match all remaining positional—
argument values to it. When we learn about tuples in Section 7?7, we will
see that Python creates a tuple for these arguments: a tuple is just a list

of values separated by commas inside matching parentheses.

M3. Match named—argument values in the call to their like-named parameters

in the header (both name-only and default—argument parameters are OK)

Function calls typically start with
a reference to a function object;
method calls typically start with
a reference to a value object,
which is followed by a dot and
a function name defined in the
class of the value object

Following a reference to a func-
tion/method object by matching
parentheses instructs Python to
call the function/method object
with the argument values in the
parentheses

Classifications for arguments and
parameters

When we call a function, Python
defines each parameter name in
the function object’s namespace
and binds each parameter name
to its matching argument value
object, using the rules M1-M5

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 60

M4. Match any remaining default—argument parameters in the header, un-
matched by rules M1 and M3, with their specified default arguments.

M5. Exceptions: If at any time (a) an argument cannot match a parameter
(e.g., a positional-argument follows a named—argument) or (b) a parameter
is matched multiple times by arguments; or if at the end of the process (c)
any parameter has not been matched, raise an exception: SyntaxError
for (a) and TypeError for (b) and (c). These exceptions report that the

function call does not correctly match its header]

When this argument—parameter matching process if finished, Python defines,
in the function’s namespace, a name for every parameter and binds each to the
argument it matches using the above rules. If an argument was itself a name,
then the value object it is bound to will be shared by the parameter name while
the function executes, just like sharing in the assignment_statementrule. In fact,
passing parameters is similar to performing a series of assignment_statements
between parameter names and argument values.

If a function call raises no exception, these rules ensure that each parameter in
the function header matches the value of exactly one argument in the function
call. After Python binds each parameter name to its argument, it executes
the body of the function, which computes and returns the result of calling the
function; of course, the code inside function bodies can also raise exceptions.

Figure illustrates successful and unsuccessful function calls, using some
of the function headers described in the previous section. The second column
indicates which arguments match which parameters (and the rules used for each
matching); unsuccessful matches indicate which part of rule M5 is violated.

Figure 4.1: Sample Function Calls: Matching Arguments to Parameters

Passing arguments to parameters
is similar to executing a sequence
of assignment_statements that
each bind a parameter name to
its matching argument value

If Python raises no exception
during parameter binding, then
each parameter in the function's
header is bound to exactly one
argument

Figure[d.T]illustrates the rules for
matching arguments to their pa-
rameters in function calls

Call Parameter/Argument bindings(matching rule) and/or Exception
math.factorial(5) x=5(M1)
math.factorial (x=5) x=5(M3)

distance(3.0,5.0)

x=3.0,y=5.0(M1) x_ref=0.0,y_ref=0.0(M4)

distance(x_ref=3.0,y_ref=5.0,x=0.0,y=0.0)

x_ref=3.0,y_ref=5.0,x=0.0,y=0.0(M3)

print(’a’,’b’,’c’,sep=":")

*xargs=(’a’,’b’,’c’)(M2) sep=":’(M3) end="\n’(M4)

math.factorial() TypeError(M5c:x)

math.factorial(1,2) x=1 TypeError(M5a:2)

distance(1.0,2.0,x=1.0)

x=1.0,y=2.0 TypeError(M5b:x)

We can use the interpreter to define a function whose body just prints the
values passed to its parameters, and then explore argument—parameter match-
ing in function calls to it. For example, we can define the function f (with-
out type annotations) and its body, which just prints each of its arguments:
>>> def f(a,b=2): print(a,b). Then calling >>> £(1) displays 1 2 and

calling >>> £ () displays an error message whose last line is TypeError: f() takes at least 1 argument (0 given).

We can enter similar function definitions in the interpreter to explore more com-
plex argument—parameter matching in more complex function calls.

5Calling it a HeaderError exception makes more sense; but Python uses SyntaxError and
TypeError. If we think of the header as specifying the type of the function —the names and
types of all its arguments— then TypeError makes some sense.

We can write a function defini-
tion that prints its arguments to
test argument—parameter match-
ing in the Python interpreter

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 61

Figure illustrates how we picture calling a function object. It has a name- We illustrate pictures of calling
space for its parameters, and we annotate it on the top with the the type function objects on the top with
: P . their header and on the bottom
FunctionType and the function’s parameter names and on the bottom with *" .
. Lo with their return reference
returns referring to the object it returns as a result.

Figure 4.2: Illustrating a Function Call: math.factorial(5)

module(math.py) FunctionType(x)
factorial

returns 120

Figure [4.3]illustrates all the details of how we picture Python executing a script A complex picture of objects
that imports a reference to the math.factorial and builtins.print function used in a small script
objects, computes 5! and prints the result on the console. We could also enter
each of these statements into the Python interpreter.
script module

from math import factorial as fact #use a fancy import form
n =25

answer = fact(n)

print (answer)

=W N =

Figure 4.3: Hlustrating a Script calling Functions

module(builtins.py)

FunctionType(*args,sep,end)
module (sys.py)

modules
L]

A returns

modulse(script.py)

answer

When Python executes this script it prints 120 on the console. Let’s explore The details explaining how
all the details of how this happens. Python executes this script

e When the script runs, the sys module binds its modules name to an
empty dict and then adds _main__ to that namespace, bound to the
module object for script.

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 62

e The builtins module is automatically imported into the script module:
builtins is added to the namespace of dict, bound to that module
object; also, all its names are imported into script although we show
only the name print in the module object for builtins and script:
that is the only one that is used in script.

e Python then starts executing statements in script.

e Statement 1 imports factorial from the math module as the name fact:
math is added to the namespace of dict, bound to the module object
of math, whose namespace contains the name factorial bound to that
function’s object (among many other definitions not used/shown). The
name fact is added to the namespace of the script module object, and
bound to/shares this same function object.

e Statement 2 adds n to the namespace of script, bound to the int value
object 5.

e Statement 3 executes an assignment_statement calling the function object
that fact refers to: Python adds the parameter x to this function object’s
namespace, bound to/sharing the same value object that its matching
argument n refers to; this function then computes and returns as its result
a reference to the 120 value object, which is bound to answer after answer
is added to the namespace of the script module object.

e Statement 4 calls the function object that print refers to: Python adds
its parameters *args (still a bit magical), sep, and end to the namespace
of print, bound to their matching argument value objects; this function
prints 120, on the console and then terminates that line (so any future
printing in the console would start on the next line) and returns a reference
to the value object None (which print always returns).

We could compute/print the same result with the following smaller script.
When executed, the result returned from calling math.factorial(5) —the
reference to the value object 120— is bound to the *args parameter in the
print function. This is an example of function ”composition”: a function call
whose argument is computed from the result returned by another function call;
Python allows these nested/composed function calls because expression now
has call as one of its options, and every argument is an expression that can be
passed to a parameter.
script module

1 import math #use a simple import

We can perform the computation
from the previous script more
simply in a shorter script using
function composition

2 print(math.factorial(5)) #print result returned by calling function on 5

As a final note on calling functions, when the parameters of a function header are
annotated with types, Python does not automatically check that the matching
arguments are of these types: it does not immediately report a problem with
the function call if they do not match. Instead, it binds the parameters to the
arguments and then executes the statements in the body of the function.

Typically if any argument’s type does not match its parameter’s type anno-
tation, the statements in the body of the function will malfunction and cause
Python to report an error by raising an exception —but the exception is raised

Python does not automatically
check that arguments match the
annotated types of their match-
ing parameters

If an argument doesn't match
the annotated type of its parame-
ter, typically the function’s body
will malfunction and raise an ex-
ception

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 63

only after the function starts executing: so the error message may be confusing,
because it is not about the function call itself, but about the code inside the
function; and this code is supposed to be hidden behind the function abstrac-
tion.

When we learn how to write functions in Chapter 7?7 we will see how they
use assert statements, which often appear as the first statements in a func-
tion body. These assertions can check the type of each parameter (and other
required properties) and raise an AssertionError exception, if any type is in-
correct: e.g. factorial can check that its parameter is a non-negative integer
(using the in, and, and >=0 operators we discuss in the next chapter)

When we write a function, we
can put an assert statement in
its body to raise an exception if
any argument doesn’'t match the
annotated type of its parameter

assert type(x) is int and x >= 0, ’argument matching x is incorrect’

Furthermore, when we learn how to use decorators in Chapter 7?7, we will
discuss how to generalize annotations beyond just types (e.g., we can specify,
as we did in the assert above, that a parameter should be an int whose value
is > 0) and how to tell Python to perform the annotation checks on a function
whenever it is called; these can raise an exception immediately indicating a
problem —before Python executes the body of the function— if the argument’s
value does not satisfy the parameter’s annotation.

Finally, sometimes we can successfully pass the value None to a parameter
whose type is not NoneType. For example, in the header for buitins.str.find
in Section the end parameter specifies an int upper—bound on the indices
to check; but if there is no upper bound (all indices are checkable), we can pass
the value None to this parameter and the function will execute properly: in
fact, None is its default argument.

4.3.1 Assigning and Printing Function Objects

We have learned that names refer to objects: we have studied how names are
defined and bound to objects with import statements, assignment statements,
and in function calls when matching/passing arguments to parameters. We have
seen three types of objects: module objects, value objects, and function objects
(and will soon study the fourth kind: class objects). Python’s assignment
statement and parameter binding mechanism allows us to bind any name to
any object. So, for example, we can write the assignment statement fact =
math.factorial which defines the name fact and binds it to the same object
math.factorial refers to: both names now share this function object. This is
similar to writing from math import factorial as fact.

When we call the print function to print a value object, Python displays
on the console a string representing the value stored in the object. For the
types of value objects we have studied, most display using the same EBNF that
describes their literal values: e.g., print (1) displays 1. Likewise, in the Python
interpreter if we enter >>> 1 Python’s read—execute—print loop automatically
displays 1. Most other types, including float and bool, display the same way.

But when we call the print function on str value objects, they display their
text without their outer quotes: e.g., print(’acggta’) displays acggta; al-
though in the interpreter, if we enter >>> >acggta’ Python displays ’acggta’
(showing the quotes); in fact if we enter "acggta" Python also displays ’acggta’,

By using a decorator, we can ex-
plicitly instruct Python to check
annotations when function is
called, raising an exception if any
argument is incorrect, before ex-
ecuting the body of the function

The wvalue None can often
be passed to some parameter
whose type annotation is not
NoneType; in such cases, often
None is the default argument for
that parameter

In Python, we can bind a name
to any type of object: we have
studied module objects, value
objects, and function objects

Python prints a value object by
displaying a string representing
the value stored in the object

Python prints a string value by
displaying its characters without
enclosing quotes

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 64

always displaying singlefquotesﬂ If we call the print function in the inter-
preter, it displays its argument values using the standard print semantics:
e.g., >>> print(’acggta’) displays acggta.

In addition, recall that the result returned by the print function is None, and
the Python interpreter does not display that value if it is the result returned by
what the user entered to the prompt. So, entering >>> None prints nothing and
reprompts immediately with >>>. But by entering >>> print(None), the print
function will be called and display its None argument, but the interpreter will
not display the None value returned as a result by print; instead it reprompts
with >>>.

When we call the print function on a function object, it displays the function
object in a special way: e.g., print(print) calls the print function to dis-
play the function object bound to the name print, which displays <built-in
function print>; likewise, calling print (math.factorial) displays the func-
tion object bound to the name math.factorial (assuming import math), which
displays <built-in function factorial>. Although this function is imported
from the math module, not the builtins module, it is still part of the standard
Python library and displays with the words built-in. The interpreter displays
function objects identically: e.g., >>> print (which does not call the print
function object —it is not followed by parentheses) displays the function object
print refers to: <built-in function print>.

So, when we see/use the name bound to a function object, we must understand
whether or not we are calling the function object it refers to. We call a function
object if we follow the reference to it by parentheses enclosing its argument
values: calling some functions, like random.random use no arguments but still
must have parentheses. Figure shows an annotated interaction with the
Python interpreter, illustrating how the names that refer to function objects
can be used to print and call the function object; examine it closely.

SECTION REVIEW EXERCISES

1. Given the function headers f (a,b,c=10,d=None), g(a=10,b=20,c=30),

If the result of the interpreter's
>>> prompt is None, the inter-
preter does not print this value,
but just reprompts immediately
with >>>

When Python prints a function
object, it displays the function
object as a special string

A name bound to a function ob-
ject refers to that object; but a
reference to a function object fol-
lowed by parentheses (enclosing
its arguments) represents a call
to that function object

and h(a,*b,c=10) ... fill in the following table using the same informa-
tion displayed in Figure
Call Parameter/Argument bindings(matching rule) and/or Exception
£(1,2,3,4) a=1, b=2, c=3, d=4(M])
£(1,2,3) a=1, b=2, c=3(M1) d=None(M4)
£(1,2) a=1, b=2(M1) c=10, d=None(M4)
£(1) a=1(M1) c=10, d=None(M4), TypeError(M5c:b)
£(1,2,b=3) a=1, b=2(M1) b=3(M3), TypeError(M5b:b)
f(d=1,b=2) d=1, b=2(M3) c=10(M4), TypeError(Mbic:a)
f(b=1,a=2) b=1, a=2(M3) c=10, d=None(M4)
£(a=1,d=2,b=3) | a=1, d=2, b=3(M3), c=10(M4)
£(c=1,2,3) c=1(M3), SyntaxError(Mba:2)
g0 a=10, b=20, c=30(M4)
g(b=1) b=1(M3), a=10, c=30(M4)
g(a=1,2,c=3) a=1(M3), SyntaxError(Mb5a:2)

6In Section ?? we will discuss the difference between the _str__ and __repr__ functions on
value objects. The print function calls __str__ to display its arguments; the read-execute-
print loop calls __repr__. These functions can return slightly different information as strings.

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 65

Figure 4.4: Examples of Printing and Calling Function Objects

Entered Statement

Annotation

>>> from math import factorial

Import factorial function: returned result is non—printing None

>>> factorial
<built-in function factorial>

Name factorial refers to a function object
Print the function object bound to the name factorial

>>> factorial(5)
120

Call the function object bound to the name factorial
using the argument 5; print the returned result

>>> x = factorial

Bind x to the function object factorial refers to (share it):
returned result is non—printing None

>>> x Name x refers to a function object

<built-in function factorial> Print the function object bound to the name x

>>> x(5) Call the function object bound to the name x

120 using the argument 5; print the returned result

x =1 Bind x to the value object 1: returned result is non—printing None
>>> x(5) Call the function object bound to the name x

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

But x refers to an int value object, not a function object
So Python raises the TypeError exception, indicating

TypeError: ’int’ object is not callable | that it cannot call an int value object
>>> print(x) Call print on the value object bound to the name x
1 Print the argument: returned result is non—printing None

>>> print(print)
<built-in function print>

Print the function object bound to the name print
Print the argument: returned result is non—printing None

Call Parameter/Argument bindings(matching rule) and/or Exception
h(1,2,3,4,5) a=1(M1), b=(2,3,4,5) (M2), c=10(M4)

h(1,2,3,4,c=5) a=1(M1), b=(2,3,4) (M2), c=5(M4)

h(a=1,2,3,4,c=5) a=1(M3), SyntaxError(Mba:1)
=1(M1)

h(1,2,3,4,c=5,a=1) | a=1(M1), b=(2,3,4) (M2), c=5(M3), TypeError(Mb5b:a)

2. What does the Python interpreter display when each of the following func-
tion calls is entered: (a) >>> print(print(print)) (b) >>> factorial(factorial).
Assume from math import factorial.

ANSWER:

>>> print(print(print))

<built-in function print>

None

>>> factorial(factorial)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: an integer is required

>>>

displayed by call to inner—print
displayed by call to outer—print
argument not an int object

error occurs inside the function

3. Describe the different between the function calls print (abc) vs. print (’abc’).

ANSWER: print(abc) calls the print function object on the object that
the name abc refers to and returns None; what it displays on the console
depends on what type of object the name abc refers to. print(’abc’)
calls the print function object on the string value object storing ’abc?’,
which always displays ’abc’ on the console and returns None.

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 66

4.4 Method Calls and the Fundamental
Equation of Object—Oriented Programming

Recall that modules can define functions and classes; and classes can themselves
define functions. We will use the technical term method when we explore
calling functions defined in classes. We call functions and methods slightly
differently in Python, but we will learn how to translate any method call into
an equivalent function call simply, by using the fundamental equation of object—
oriented programming.

Review the header of the builtins.str.find function presented in Sec-
tion [4.5} it describes the find function, which is defined in the str class, which
is defined in the builtins module, which is automatically imported into every
module (from builtins import *). Assume we define dna = ’acggta’. To
call this function as a method (e.g., dna.find (’ggt’)) we start with a reference
to an object, which is followed by the method name (the two are separated by a
dot) defined in that object’s class, which is followed by arguments inside match-
ing parentheses that always indicate a call. Python binds the object specified
before the dot to the first parameter in the function header, and then matches
all the arguments in parentheses to the remaining parameters.

Figure illustrates the method call dna.find(’ggt’). In this picture, all
the value objects of type/class str, int, and NoneType are enhanced to show the
special __class__ reference in their namespaces; each refers to its class object,
which the names str, int, and NoneType in the namespace of the builtins
module object also refer to/share. Note that the namespace of the str class
object shows the name find, which refers to one function object it defines.

Figure 4.5: Illustrating a Method Call: dna.find(’ggt’)

type/class

FunctionType(self,sub,start,end) SEF

Methods are functions defined in
classes

Methods are called by writing a
reference to a value object; a dot;
the name of a function defined
in the object's class; matching
parentheses enclosing arguments

Illustrating the method call

dna.find(’ggt’)

module(script.py)

self

type/class

NoneType

NoneType

type/class

In the method call dna.find(’ggt’), Python first locates the find function
using the __class__ reference of the value object dna refers to (it is a str). In
that method Python binds the first parameter (named self) specially to the

47% ass_ dna
sub 'acggta'

In a method call, Python binds
the value object appearing be-
fore the method name to the first
parameter in the function call
(commonly named self)

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 67

same object dna refers to. Then it binds the second parameter (named sub) to
an object for the str literal >ggt’, which is the first actual argument in the
method call. Then it binds start to its default argument —an object for the
int literal 1— and end to its default argument —an object for the NoneType
literal None. Finally, it calls the find function, which returns the index 2; recall
that string indexes start at 0, so dna stores a at index 0, c at index 1, g at
index 2: the starting index for the substring *ggt’.

The . method call dna.find(’ggt’) can be equivalently written as the func-
tion call str.find(dna, ’ggt’). Given this particular equivalence, we are one
step away from stating the fundamental equation for object—oriented program-
ming: how to translate any method call into its equivalent function call.

But first we need to learn one more thing about Python: its builtins module
defines a type function whose parameter is a reference to an object and whose
returned result is a reference to the type/class object of its parameter. It
returns the reference in the storage cell for the __class__ name in the namespace
for any value object parameter, which is why Figure [L.5] shows the __class__
name for each value object. In fact, calling the function type(dna) returns the
same reference that dna.__class__returns. Note that the returned class object
defines find in its namespace, because the str class defines find, similarly to
how modules define functions.

Now we can state the fundamental equation of object—oriented programming,
which explains how Python translates a method call into a function call. Given
any value object v, a method m (which must be defined in type(v)), and any
number of arguments a, b, c, ... (which must be correct according to the
header of m), the method call v.m(a,b,c...) is equivalent to the function call
type(v) .m(v,a,b,c,...) and Python translates the former into the latter
automatically. Stated as an equation

Fundamental Equation of Object—Oriented Programminﬂ
v.m(a,b,c,...) = type(v).m(v,a,b,c,...)

Here, Python calls the function m defined in the class type (v); it automatically
matches the special argument v to the first parameter, and matches all the
arguments in parentheses to the remaining parameters. Since type(dna) refers
to the same type/class object as str, dna.find(’ggt’) is translated by this
equation into str.find(dna, ’ggt’). The name of the first parameter in most
methods is self, indicating it should be a reference to the value object (itself)
used to call the method.

We can also use value objects for literals to call methods. For example, we
can call ’acggta’.find(’ggt’) in Python. Again, because type(’acggta’)
is str, Python translates this method call into the equivalent function call
str.find(’acggta’, ’ggt’), using this literal as the first argument in the func-
tion call.

Given the ability to call functions and methods equivalently, which form
should we use? Sometimes there is no choice: functions declared in modules
must be called by their function name. But functions declared in classes can

7 When we learn about declaring classes in inheritance hierarchies, we will discover that
the rules governing this equation generalize how to find the function to call: first examining
the type/class of the value object (as shown here), and if necessary its superclasses.

The method call
dna.find(’ggt’)

is equivalent to the function call
str.find(dna,’ggt’)

The type function returns a ref-
erence to the type of an object,
its class: the object its __class__
name refers to

Python translates method calls
into equivalent function calls by
using the type function

Python uses the type of the value
object to find the function in
the class to call, and passes that
value object to the first parame-
ter in the function

We can call method on objects
created for literals

Should we use function calls or
method calls?

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 68

be called as methods or functions. Calling functions highlights the name of the
function; calling methods highlights the main object being operated on by the
function. Object—oriented programming puts the primary focus on the main
object; it treats the method being called on that object to be of secondary im-
portance, and treats all the other arguments (if they exist) used to control the
method call to be of tertiary importance. So, generally we will call functions de-
clared in classes as methods, prefacing each method call by the the main object
on which the method operates. When we discuss inheritance, we will discover
that the rules for finding the equivalent function become more complex, adding
to the powerfulness of calling methods.

4.4.1 Printing Method Objects and Class Objects

We have already learned how Python displays value objects and function ob-
jects. Python displays method objects using the same left and right angle—
brackets used to display function objects, but specifying the word method
instead of function and displaying the type/class of the primary object on
which the method can be called: >>> str.find displays as <method ’find’
of ’str’ objects>.

Python displays type/class objects in a form similar to function objects. For
example >>> int returns a reference to the int class which displays as <class
’int’>, using the same left and right angle—brackets used to print function ob-
jects, specifying the word class and a string naming the class (’int’). Like-
wise, >>> str returns a reference to the str class which displays as <class
’str’>. We can refer to the names int and str because of the automatic im-
port: from builtins import *. The type function produces similar results:
>>> type(1) displays as <class ’int’> and >>> type(’acggta’) displays as
<class ’str’>.

Python also defines the following two methods, used in the problems be-
low. First, int.bit_length(self : int) -> int returns the number of bi-
nary digits (bits) needed to represent the magnitude of the integer specified by
its parameter: (19) .bit_length() returns the result 5, because 1919 = 100115,
and the binary number has 5 bits. Trying to call ’a’.bit_length() raises
AttributeError because the str class defines no bit_length method attribute.
Second, str.count(self : str, check : str) -> int returns the number
of times check occur in self: ’acggta’.count(’a’) returns the result 2 be-
cause there are two occurrences of ’a’ in ’acggta’.

SECTION REVIEW EXERCISES

1. Show Python’s tokenization of 19.bit_length(); what problem occurs
if we enter this information into the interpreter?

ANSWER: Python tokenizes this information as |19. " | bit_length [d
d: a float literal followed by an identifier. Here the dot is treated as

part of a float literal, not as a delimiter between a reference to a value
object and a method name, so the Python interpreter raises an exception.
To fix this problem, we must use parentheses around the integer literal.

2. Translate the following method calls into equivalent function calls. As-

Python displays method objects
like function objects, but with
the word method

Python displays type/class ob-
jects with the word class

Two methods (bit_length and
count) used in the upcoming
problem set

sume we have declared s = ’bookkeeping’ andd = ’o0’. a. (19) .bit_lengthQ;

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 69

b. ’acggta’.count(’a’) c. s.count(d) d. acggta’.strip(’ac’) —and
what result does this method call return?

ANSWER: a. int.bit_length(19); b. str.count(’acggta’,’a’) c. str.count(s,d)

d. str.strip(’acgtta’,’ac’) returns ’ggt’

4.5 Names Defined In Modules

4.5.1 Names Defined in the builtins Module

Tables present the names defined in the builtins module, organized
by class names, function names, and exception names (exceptions are actually
special class names). Table presents the names of types/classes defined in
the builtins module. These include the types/classes we already know from
out discussion of literals, as well as many other classes, some of which we will
examine later in this book. Note that type is actually a class, not a function,
but we can often call a class just like a function, and for type we have learned
its semantics.

Table 4.1: Type/Class Names Defined in the builtins Module

bool enumerate map set type
bytearray filter memoryview slice zip
bytes float object staticmethod
classmethod frozenset property str

complex int range super

dict list reversed tuple

Table presents the names of functions defined in the builtins module.
We have already discussed the print function, which displays output on the
console. In Section we will discuss the input function, which prompts
the user to type input on the keyboard With these two functions, we can write
scripts that prompt for inputs and display the results of computations on these
inputs.

Table 4.2: Function Names Defined in the builtins Module

abs dir help max round
all divmod hex min setattr
any eval id next sorted
ascii exec input oct sum
bin format isinstance open vars
callable getattr issubclass ord

chr globals iter pow

compile hasattr 1len print

delattr hash locals repr

The help function is of special interest for programmers exploring Python: its
prototype is help(name : object) -> str; semantically it returns the special
“docstring” describing whatever object is supplied as its argument, which is
typically a function, module, or class object (for a value object it returns the

We classify the names imported
from the builtins module into
three tables: types/classes, func-
tions, and exceptions

The print function displays out-
put information on the console;
the input function prompts the
user and accepts input from the
console

The help function displays doc-
string information about objects
—especially function objects— on
the console

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 70

docstring of its class, which can be lengthy). See the docstring for the distance
function on page[55]for an example. We can call help in the interpreter to print
useful information about any defined name. Here is an example.

>>> help(print)
Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=’ ’, end=’\n’, file=sys.stdout)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.
sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

Here, the help function returns a docstring, which the interpreter prints. Gen-
erally, docstrings are meant to be read by knowledgeable programmers, but it
is good to get into the habit of using help in the interpreter to help us become
more knowledgeable Python programmers. More information is available on
Python’s documentation home page: www.python.org/doc/.

Table presents the names of exceptions defined in the builtins module.
Notice that exceptions names all use a special convention, where the first letters
in multi-word names are capitalized, called “camel notation”. Every exception
name is a special kind of class name, so they could appear in Table But
because there are so many exceptions, we list them here in a separate table.

Table 4.3: Exception Names Defined in the builtins Module

stdout.

Get into the habit of using help
to explore the headers and se-
mantics of functions

Python's builtins module de-
fines many exception names

ArithmeticError ImportError ReferenceError UnicodeEncodeError
AssertionError ImportWarning ResourceWarning UnicodeError
AttributeError IndentationError RuntimeError UnicodeTranslateError
BufferError IndexError RuntimeWarning UnicodeWarning
BytesWarning KeyError StopIteration UserWarning
DeprecationWarning KeyboardInterrupt SyntaxError ValueError
EQFError LookupError SyntaxWarning Warning
EnvironmentError MemoryError SystemError WindowsError
Exception NameError SystemExit ZeroDivisionError
FloatingPointError NotImplementedError TabError

ExceptionFutureWarning OSError TypeError

GeneratorExit OverflowError UnboundLocalError

IOError PendingDeprecationWarning UnicodeDecodeError

4.5.2 Functions Defined in the math Module

Table [4.4] presents the names of functions defined in the math module, which
provides many useful mathematical and scientific functions (most of which are
found on calculators). Try importing the math module in the interpreter, and
then typing >>> help(math) as well as >>> help(math.sqrt) to see Python’s
documentation of this entire module and one of its functions.

Python's math module defines
many standard mathematical
and scientific functions

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 71

Table 4.4: Functions Named Defined in the math Module

acos cos floor isnan sinh
acosh cosh fmod ldexp sqrt
asin degrees frexp lgamma tan
asinh erf fsum log tanh
atan erfc gamma log10 trunc
atan2 exp hypot modf

atanh expml loglp pow

ceil fabs isfinite radians
copysign factorial isinf sin

4.5.3 Input Functions in the builtins and prompt Modules

In this section we will discuss how to perform simple input with the input func-
tion defined in the builtins module and begin exploring some of the simpler
functions defined in the prompt module to do input with error detection and
recovery. We will describe all these functions by their headers and semantics.

The input function has the header input (prompt : str = ’’) -> str; note
the default argument for prompt is an empty string: a string with no characters.
The semantics of calling input are to display the prompt string on the console
(without its quotes) and wait until the user finishes typing a response on the
keyboard by pressing < (echoing the characters on the console as the user en-
ters them): the result it returns is a string containing all the characters in the
user’s response. So, if we wrote last_name = input(’Enter last name: ’)
as a statement in a module, it could produce the following interaction on the
console (with the user typing Pattis and pressing).

Enter last name: Pattis

This assignment statement would define the name last_name and bind it to
the string *Pattis’; if we pressed < immediately it would be bound to the
empty string ’’. Note that prompt is displayed without quotes and the user
does not type quotes for the string returned by input: the result returned in
always a string. In fact, the following interaction on the console

Enter last name: 7

would define the name last_name and bind it to the string >7: typing digits
still results in this function returning a string, as specified by its header.

So, how can we input an integer? We call the int class as a function on the
result returned by input: e.g., cents = int(input(’Enter change: ’)) in
which the string returned by input becomes an argument to the int function
which constructs an object of the int type/class whose value is specified by the
digits in its string argument. This is another example of function composition.
In fact, we could write the Python statement

print (math.factorial (int (input (’Enter factorial argument: ’))))

which is a quadruply—composed function: Python calls the input function and
uses the result it returns as an argument to the int function, which uses the
result it returns as an argument to the math.factorial function, which uses

There are two ways to prompt
users for input on the console,
using functions defined in the
builtins and prompt modules

The input function prompts the
user with a string and returns a
string

The prompt string is displayed
without quotes and the user's re-
sponse string is entered without
quotes

The int function creates an int
object from a str object; we can
compose function calls of int
and input to enter an integer

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 72

the result it returns as an argument to the print function. Said another way,
Python prints the factorial of the integer value of the string input.

There are two useful headers for int. When a function has more than one
header, we call it “overloaded”; there is no negative connotation to being an
overloaded function in Python, overloaded is just a descriptive technical term.

e int(value : str, base : int = 10) -> int
Returns the integer equivalent of its value parameter (a string) in the
specified base (which is frequently omitted and defaults to 10): e.g.,
int(’31°’) returns the result 31; and int(’101’,2) returns the result
5, because 1015 = 519

e int(value : float) -> int
Returns the truncated towards zero integer equivalent of its value param-
eter (a floating—point): e.g., int(5.8) returns the result 5; int(-5.8)
returns the result -5. So in both cases any information after the decimal
point is removed to produce an int value object.

Similarly, we can call the float class as a function, using either of the following
headers (so float is also an overloaded function too).

e float(value : str) -> float
Returns the floating—point equivalent of its value parameter (a string in

The int function is overloaded:
it has multiple headers

The float function is over-
loaded

the format of an optionally signed float_literal); e.g., £loat (°9.10938188E-31’)

returns the result 9.10938188E-31.

e float(value : int) -> float
Returns the floating—point equivalent of its value parameter (an integer):
e.g., float (1) returns the result 1.0. We would write 1.0 not float (1),
but if x stores an int value object, calling float (x) returns a float value
object whose value is equivalent to x.

In fact, Python also includes the headers int(value : int) --> int and
float(value : float) --> float, which each return the same values as their
argument: e.g., int (1) returns 1 as a result.

Experiment in the Python interpreter with the input, int, and float func-
tions until you understand them well. Notice that if we call int(’ab’) or
int(’1.2’) Python raises a ValueError exception, because neither string ar-
gument has an equivalent integer value, so Python must report its inability
to call this function correctly with these arguments; but the composed func-
tion call int (float (’1.2)) returns 1, because float(’1.2’) returns 1.2 and
int(1.2) returns 1.

The prompt module defines both general-purpose and specific functions that
prompt a user for input. The functions it defines have an advantage over com-
posing a type-conversion function with the input function, when the user enters
input in the wrong form: they display an error messsage and reprompt the user,
instead of raising an exception and terminating the script.

Here are the headers of the simplest and most commonly used functions de-
fined in prompt: they are all similar. Note that the type/class FunctionType
means that the is_legal parameters are bound to some function object: if not
None, the function object specifies one parameter and returns a boolean value
that determines whether or not the input is appropriate (see the semantics
below, for more information).

Experiment in the Python in-
terpreter composing the input,
int, and float functions

The prompt module defines
functions that prompt the user
on the console, detecting input
errors and reprompting

The headers of all the functions
defined in prompt are similar

int

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 73
prompt.for_int (prompt_text str,

default int = None,

is_legal : FunctionType = (lambda x : True),

error_message str = ’not a legal value’) ->
prompt.for_float (prompt_text str,

default : float = None,

is_legal : FunctionType = (lambda x : True),

error_message str = ’not a legal value’) -> float
prompt.for_bool (prompt_text str,

default : bool = None,

error_message str

= ’Please enter a bool value:

prompt.for_string(prompt_text str,
default int = None,
is_legal : FunctionType = (lambda x : True),
error_message : str = 22) -> str
prompt.for_int_between(prompt_text str,
low int,
high int,
default int = None,

error_message str = ’’) -> int
Semantically, all prompt the user by displaying the prompt_text string followed
by >: ’; if default is not None, its value appears in square brackets between
the prompt string and ’: ° suffix. The user can then type any answer and press
< (Enter) (just as with the input function). If the user immediately presses <=
it is as if he/she typed the argument matching default (whose value is shown
in the square brackets).

When the user enters a string, these functions check whether it can be con-
verted into a value of the desired type. If it can, and if the is_legal parameter
is not bound to None, Python also calls the function that is_legal is bound
to with the converted user—input value as an argument, to determine whether
or not it is appropriate: the is_legal function returns True as a result. If
the type/class of the input string and the optional verification are correct, the
type—converted value is returned; otherwise Python prints the error message
string and reprompts the user (doing so any number of times, until the user
enters correct input).

Executing cents = int(input(’Enter change: ’)) is similar to execut-
ing cents = prompt.for_int (’Enter change’) except if the user enters in-
correct input; when calling int with incorrect input, Python would raise a
ValueError exception. Here is an example of the console interaction for one
call of prompt.for_int with incorrect input.

Enter change: abc
Exception: invalid literal for int() with base 10: ’abc’

True or False’) -> bool

These functions prompt the user
to enter a value, or just press <
to use the value of default

These functions check that the
user enters the right type/class
of value and that is_legal (if it
is not None) returns True for the
entered value

The difference between the
input and prompt.for_int
functions

Possible error: cannot convert str ’abc’ to specified type of value

Enter change: 87

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 74

The user enters an incorrect type/class of value, is told about an entry error,
is reprompted, and enters a correct value: 87 which is bound to cents. The
user would be reprompted over—and-over (if necessary) until he/she enters a
string that can be converted to an integer.

Now, suppose that we want to define a name p bound to to an integer that is
prime. We are assuming that the predicate module (see below) is imported,
and defines the function is_positive(i : int) -> bool: this function re-
turns a boolean telling whether or not its argument is a positive number :
strictly greater than zero. We can write a script that executes the following
assignment statement

The prompt.for_int function
reprompts when the user enters
a value of the incorrect type

The prompt.for_int function
checks the entered value using its
is_legal parameter if it stores
a reference to a function object
(not None)

p = prompt.for_int(’Enter a positive’,17,is_legal=predicate.is_positive)

Here are two examples, on the left and right, of a console interaction executing
this statement. Note that when calling prompt.for_int its first two argu-
ments are matched positionally to the first two parameters, then the argument
is_prime is matched to the parameter is_legal, and finally the parameter
error_message is matched to its default argument ’not a legal value’.

Enter positive[17]: -4 Enter positive[17]:
Entry Error: ’-4’; not a legal value:
Please enter a legal value

Enter positive[17]: 13

In the left interaction, p is bound to the integer 13 after the user is reprompted
because the entered value -4 isn’t a positive number; in the right interaction,
p is bound to the integer 17: the default argument, which is also a positive
number.

4.5.4 Functions Defined in the predicate Module

The predicate module defines many functions, including functions with the
following headers (some overloaded). As required in the description above for
functions matching the is_legal parameter, each function header specifies one
argument and returns a boolean value.

predicate.is_even (i : int) -> bool
predicate.is_odd (1 : int) -> bool
predicate.is_positive (i : int) -> bool
predicate.is_non_negative (i : int) -> bool
predicate.is_prime (i : int) -> bool
predicate.is_positive (f : float) -> bool
predicate.is_non_negative (f : float) -> bool
predicate.length_equal (i : int) -> FunctionType

We can use these functions to verify input, passing any as an argument to the
is_legal parameter defined in the prompt module functions. If is_legal is
bound to its default argument (lambda x: True) then the input —so long as it
is the correct type—is accepted. Note that the is_positive and is_non-negativ
(returns True for zero and positive values) are overloaded for the types int and
float.

The predicate module also defines the length_equal function, which has an

The predicate module defines
a variety of single—parameter
functions (some overloaded) that
return a boolean result

We can use the functions defined
in the predicate module as ar-
guments to the functions defined
in the prompt module

e

The length_equal function de-
fined in the predicate module
returns a function

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS (0]

interesting header: predicate.length_equal (i : int) -> FunctionType.
This function takes an int parameter and returns a function as a result: se-
mantically, the function it returns has the header ... (s: str) -> bool where

indicates an unnamed function object that takes a string parameter and
returns a boolean result.

So, predicate.length_equal is a name that refers to a function object. We can instruct Python to call
The call predicate.length_equal(5) returns a reference to another function the function that is returned by
object: one that will return True when its parameter is a string whose length f[:iill]mg the length-equal func-
is equal to 5. So predicate.length_equal(5) (’abcde’) calls the returned
function, which returns the result True for its string argument. Notice that by
following predicate.length_equal by (5) we call this function; by following
predicate.length_equal(5) by (’abcde’) we call the function it returns.

Figure illustrates this function call.

Figure 4.6: The function call predicate.length_equal(5) (’abcde’)

module(predicate) FunctionTypeli)

length_equal

. stre
FunctionType(s)

' '
:
returns :

bool

returns True

[
— d

Here is how we can use the length_equal function when prompting for a string: We can use

x = prompt.for_string(is_legal=predicate.length_equal(5)). The verifpredicate.length equal to

parameter is bound to the function returned by predicate.length_equal(5), input a string that is required
. . . . to contain a certain number of

a function that returns True for any string of length 5. Note that in this call to characters

prompt.for_string, the prompt, default, and error parameters refer to their

default arguments. This call could result in the following console interaction.

Enter string: abc
Illegal string entered
Enter string: abcde

After this interaction, the name x would be bound to the string ’abcde’.

The ability for a function call to specify another function as an argument
and/or return another function as a result is a very powerful programming
feature. Although this feature is simple enough to introduce and use here, we
will learn more about it (including how to write functions that return functions),
and see more complex uses for these features, later in this book.

SECTION REVIEW EXERCISES

1. Entering >>> import math followed by >>> help(sqrt) in the Python
interpreter fails to display information about the sqrt function. Write
two different import /help statements that display information about the
sqrt function. Hint: names.

ANSWER: 1. >>> import math followed by >>> help(math.sqrt)
2. >>> from math import sqrt followed by >>> help(sqrt)

2. a. Write a function call that would produce the interaction below on the

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS 76

console. b. Describe the interaction if we added default=4 in the func-
tion call and then entered < immediately when prompted?

Enter a prime: 4

That value is not prime

Enter prime: 5

ANSWER: a. prompt.for_int(’Enter a prime’, error=’That value
is not prime’, is_legal=predicate.is_prime) b. Python would dis-
play That value is not prime and reprompt because the default value
specified is not prime.

CHAPTER SUMMARY

This chapter discussed how functions are called, including rules that specify
how the argument values in function calls are matched/bound to the parameter
names in function headers. We learned that a function header specifies the
name of a function and the names, number, and order of its parameters. These
parameters can be annotated with their types (as can the result returned by
the function); each parameter can optionally specify a default argument that
Python uses if the function call doesn’t explicitly supply an argument matching
that parameter. The semantics of various function headers were described in
English, by specifying how their returned results (outputs) are related to their
argument values (inputs); one especially important function is print. We saw
various pictures illustrating how functions are called, and saw how function ob-
jects can be bound to names, called, and printed in Python. Next we discussed
methods: functions defined inside classes. Method calls are a special kind of
function call that starts with a reference to a object, followed by a function
name defined for the object’s class. We learned how to translate method calls
into equivalent function calls, by using the type function, and how methods and
classes are printed. All the names defined in the builtins class are automat-
ically imported into every module: these names define classes, functions, and
exceptions. Finally, we learned two ways to prompt the user for input on the
console: using a type—conversion function composed with the input function,
or using one of the functions defined in the prompt module, which are a bit more
forgiving of incorrectly entered input. During our discussion of function calls
we examined the composition of function calls, how functions can be passed as
arguments in function calls, and even how function calls can return functions
(and how these returned functions can be used).

CHAPTER EXERCISES

1. Write a script (including imports) that prompts the user for a non-negative
integer and then prints that number and its factorial. An interaction
might look like

Enter x for x!: -1

Re-enter a non-negative value
Enter x for x!: 5

5! is 120

2. Show what the following script displays on the console. Hint: Carefully
examine the arguments matching the sep and end parameters.

CHAPTER 4. READING HEADERS AND CALLING FUNCTIONS

ST W N

print(’a’,’b’,
print(’d’,’e’,
print(’g’,’j’,
print(’j’,’k’,
print(°m’,end=

print (’n?’)

’C’)

’f’,sep=”)
’i’,sep=’:’)
’1’,sep=’——’,end=’:’)
’\n\n’)

7

	Contents
	Reading Headers and Calling Functions
	Introduction
	Function Headers
	Function Calls: MatchingArguments to Parameters
	Assigning and Printing Function Objects

	Method Calls and the FundamentalEquation of Object–Oriented Programming
	Printing Method Objects and Class Objects

	Names Defined In Modules
	Names Defined in the builtins Module
	Functions Defined in the math Module
	Input Functions in the builtins and prompt Modules
	Functions Defined in the predicate Module

