
Infinities in Mathematics and Computation

This lecture answers the following questions
• Are there different “infinities”?
• How does the number of mathematical 

functions compare with the number of 
computer programs (both are infinite)?

• Can we precisely specify a function that 
cannot be written as computer program (there 
are more functions than programs) ?



Proof by Contradiction

• Assume a statement is TRUE.
• By mathematical logic, deduce the 

consequences of such a statement.
• If a statement known to be FALSE (a 

contradiction) is deduced, the original 
statement must be FALSE.

So, to prove S is TRUE, assume S is FALSE 
and show that such an assumption leads to a 
contradiction: then, S is proved TRUE.



2 is Irrational: a Proof by Contradiction

To prove √2 is irrational, assume the 
opposite: that it is rational and can 
therefore be written as 𝑝𝑝/𝑞𝑞, where 𝑝𝑝
and 𝑞𝑞 are two integers that have NO 
common factors (this is important).

• 2 = 𝑝𝑝/𝑞𝑞 Assumed above
• 2 = 𝑝𝑝2/𝑞𝑞2 Square both sides
• 2𝑞𝑞2 = 𝑝𝑝2 Multiply by 𝑞𝑞2

• 𝑝𝑝2 is even It has a factor of 2
• 𝑝𝑝 is even If p odd -> 𝑝𝑝2 odd

• write 𝑝𝑝 = 2𝑚𝑚 p is even
• 2𝑞𝑞2 = 2𝑚𝑚 2 Substitute 2m for p
• 2𝑞𝑞2 = 4𝑚𝑚2 Expand 2𝑚𝑚 2

• 𝑞𝑞2 = 2𝑚𝑚2 Divide by 2
• 𝑞𝑞2 is even It has a factor of 2
• 𝑞𝑞 is even If 𝑞𝑞 odd -> 𝑞𝑞2 odd
Contradiction: 𝑝𝑝 and 𝑞𝑞 are both even, 
so they have a common factor, 2.
Since a contradiction was reached, then 
the original assumption must be 
FALSE; therefore √2 cannot be written 
as ⁄𝑝𝑝 𝑞𝑞, so it is irrational.



Comparing Sizes of Finite Sets
(let |X| denote the size of set X) 

1)  Count the elements

A = {a,b,c}
X = {x,y,z}

|A| = 3
|X| = 3

Therefore, |A| = |X|

2) Pair the elements
A = {a,b,c} {a,b,c}

or
X = {x,y,z} {x,y,z}
In a 1-1 mapping, every 
element in a set appears at the 
end of exactly 1 arrow. 
Therefore,
|A| = |X|
We do not need to know the 
actual size of either set to know 
they are the same size.



Comparing Sizes of Infinite Sets

Sets of Positive & Whole 
numbers have the same size:

P = {1, 2, 3, 4, 5, …}

W={0, 1, 2, 3, 4, …}

P-to-W(x) = x-1
W-to-P(x) = x+1

Sets of Positive & Even 
numbers have the same size:

P = {1, 2, 3, 4, 5, …}

E = {0, 2, 4, 6, 8, …}

P-to-E(x) = 2(x-1)
E-to-P(x) = (x+2) / 2



Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also 
have the same size?

P = {1, 2, 3, 4, 5, 6, 7, …}

I = {…, -3, -2, -1, 0, 1, 2, 3, …}



Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also 
have the same size?

P = {1, 2, 3, 4, 5, 6, 7, …}

I = {…, -3, -2, -1, 0, 1, 2, 3, …}
P-to-I(odd x) = (x-1) /2 I-to-P(x>=0 x) = 2x+1
P-to-I(even x) = (-x)/2 I-to-P(x<0 x) = -2x



The First Infinity: 𝑋𝑋0

The sets of positive, whole, even, and integer 
numbers all have the same size
|𝑃𝑃| = |𝑊𝑊| = |𝐸𝐸| = |𝐼𝐼| = 𝑋𝑋0(aleph-naught)
Georg Cantor (1845-1918): “A set is infinite if 
its elements can be put into a 1-1 mapping with a 
proper subset of themselves.”
Dauben, Georg Cantor: His Mathematics and 
Philosophy of the Infinite, Princeton, 1979.



Rationals(Q): 𝑋𝑋0 or Bigger?

Let Y / X represent the rational 
number at coordinate (X, Y). To 
show that |Q| = 𝑋𝑋0, produce a 
“path” that systematically walks 
through every (X, Y) coordinate 
in this lattice: visit a 1st lattice 
point, a 2nd lattice point, a 3rd

lattice point, …



Rationals(Q): 𝑋𝑋0 or Bigger?

Let Y / X represent the rational number at 
coordinate (X, Y). Then the mapping is
{1, 2, 3, 4, 5, 6, 7, 8, …}

{1/1, 1/2, 2/2, 2/1, 3/1, 3/2, 3/3, 2/3, …}

Therefore, |Q| = 𝑋𝑋0

Y

X



Real (R): 𝑋𝑋0 or Bigger

𝑅𝑅 > 𝑋𝑋0: Proof by Contradiction (Diagonalization)
Assume there is a 1-1 Mapping from P to R[0,1]

1 .0 0 0 0 0 0 …
2 .5 0 0 0 0 0 …
3 .3 3 3 3 3 3 …
4 .6 9 3 1 4 7 …
5 .3 1 8 3 0 9 …
6 .1 0 1 0 0 1 …



Real (R): 𝑋𝑋0 or Bigger

𝑅𝑅 > 𝑋𝑋0: Proof by Contradiction (Diagonalization)
Assume there is a 1-1 Mapping from P to R[0,1]

We can construct a value V that 
differs from every value in this list. 
Make the ith digit of V be 1+ (the ith

digit of the ith number_, or 0 if the ith

digit is 9. For this mapping:
V = .114212…
So V is not on the list, leading to a 
contradiction, so there is no possible 
mapping.
We say 𝑅𝑅 = 𝑋𝑋1



The Continuum Hypothesis

In summary, 𝑋𝑋0 = 𝑃𝑃 < 𝑅𝑅 = 𝑋𝑋1
The Continuum Hypothesis (unproved):

“There exists no set S such that 
𝑋𝑋0 < 𝑆𝑆 < 𝑋𝑋1”

Although the Continuum Hypothesis (CH) 
remains unproved, it has been proven that most 
of mathematics remains the same regardless of 
whether the CH is TRUE or FALSE.



R[0,1] x R[0,1]:  =𝑋𝑋1 or Bigger?

R[0,1] x R[0,1]: = {(x,y) | x in [0,1] and y in [0,1]}
This set describes all points in a unit square.

Proof that |R[0,1] x R[0,1]| = 𝑋𝑋1
Let (x,y) be written (.𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4𝑥𝑥5 …, .𝑦𝑦1𝑦𝑦2𝑦𝑦3𝑦𝑦4𝑦𝑦5 …
Map (x,y) ↔ . 𝑥𝑥1 𝑦𝑦1𝑥𝑥2𝑦𝑦2𝑥𝑥3𝑦𝑦3𝑥𝑥4𝑦𝑦4𝑥𝑥5𝑦𝑦5
So |R[0,1] x R[0,1]| = |R| = 𝑋𝑋1



English Statements(E): 𝑋𝑋0 or Bigger

Assume an alphabet with 26 
letters, a space (written ~), 
and a period (written .); 
e.g., SEE~DICK~RUN.
1 A
2 B
…
26 Z
27 ~
28 .

29 AA
30 AB
…
54 AZ
55 A~
56 A.
57 BA
…
784 ..
…
6.5x1018

Thus, we can list all 
possible statements in the 
following order: first all 
one-letter statements in 
dictionary order then all 
two-letter statements in 
dictionary order, etc. 
mapping each positive 
number to a statement.

Therefore |E| = 𝑋𝑋0

SEE~DICK~RUN.



Computer Programs (C): 𝑋𝑋0 or Bigger?

Computer programs are written in a special 
alphabet that, like English, includes letters and 
punctuation. They can be considered statements
written over this enlarged alphabet.

Therefore by the same reasoning process |C| = 𝑋𝑋0



Mathematical Functions (M): 𝑋𝑋0 or Bigger?

𝑀𝑀 > 𝑋𝑋0: Look at functions mapping P to T/F
Assume there is a 1-1 Mapping from P to M

We can construct a function 𝑓𝑓 that 
differs from every 𝑓𝑓𝑖𝑖 on this list. 
Make the ith value of 𝑓𝑓 be the 
opposite of 𝑓𝑓𝑖𝑖(𝑖𝑖): e.g.
𝑓𝑓 1 = 𝑇𝑇, 𝑓𝑓 2 = 𝐹𝐹, 𝑓𝑓 3 = 𝐹𝐹, …

So 𝑓𝑓(𝑖𝑖) differs from every 𝑓𝑓(𝑖𝑖) and 
therefore is not on the list, leading to 
a contradiction, so there is no 
possible mapping 

𝑀𝑀 > 𝑋𝑋0



Mathematical Functions and Programs

|C| < |M| so there are more mathematical 
functions than computer programs.
Therefore, some mathematical functions cannot 
be programmed on a computer.
Are there any “interesting” mathematical 
functions that cannot be programmed?



The Halting Problem

Does there exist a program H, which given any 
program P and data D determines whether or not 
P halts when run on D?
Let P(D) denote running program P on data D.
So H(P,D) is either T or F, depending on whether 
or not P(D) halts.
H itself must always halt and produce an answer 
telling whether P(D) halts.



Half Solving the Halting Problem

We can almost compute H by running program P 
on data D and returning T whenever P(D) halts; 
but such a function would never return a value if 
P(D) never halted. At some point an actual H 
would have to return F – when it knew that P(D) 
would never halt – if it could somehow know.



Proving the Halting Problem is Unsolvable

Assume H(P,D) exists as described; define
G(x) = if H(x,x) then loop forever else halt;
Does G(G) halt?
If we assume it halts, we can prove it runs 
forever; if we assume it runs forever, we can 
prove it halts. Therefore, we have constructed a 
function G that cannot exist; therefore H cannot 
exist, because if H existed, we could easily 
construct G as described above.



H is a Powerful Theorem Prover

If H existed, we could use it as a powerful theorem 
prover in mathematics.
Fermat’s Conjecture:

“There are no integral solutions to the 
equation: 𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛 = 𝑐𝑐𝑛𝑛 (with n > 2)”

Write a program that generates every possible 
integral value for (a,b,c,n similar to generating 
rationals) and halts when 𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛 = 𝑐𝑐𝑛𝑛 and n>2 .
The program halts iff the conjecture is FALSE.
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