Infinities in Mathematics and Computation

This lecture answers the following questions

- Are there different "infinities"?
- How does the number of mathematical functions compare with the number of computer programs (both are infinite)?
- Can we precisely specify a function that cannot be written as computer program (there are more functions than programs) ?

Proof by Contradiction

- Assume a statement is TRUE.
- By mathematical logic, deduce the consequences of such a statement.
- If a statement known to be FALSE (a contradiction) is deduced, the original statement must be FALSE.

So, to prove S is TRUE, assume S is FALSE and show that such an assumption leads to a contradiction: then, S is proved TRUE.

$\sqrt{2}$ is Irrational: a Proof by Contradiction

To prove $\sqrt{ } 2$ is irrational, assume the opposite: that it is rational and can therefore be written as p / q, where p and q are two integers that have NO common factors (this is important).

- $\sqrt{2}=p / q$
- $2=p^{2} / q^{2} \quad$ Square both sides
- $2 q^{2}=p^{2} \quad$ Multiply by q^{2}
- p^{2} is even It has a factor of 2
- p is even If p odd $->p^{2}$ odd
- write $p=2 m \quad \mathrm{p}$ is even
- $2 q^{2}=(2 m)^{2} \quad$ Substitute 2 m for p
- $2 q^{2}=4 m^{2} \quad$ Expand $(2 m)^{2}$
- $q^{2}=2 m^{2} \quad$ Divide by 2
- q^{2} is even It has a factor of 2
- q is even

If q odd $->q^{2}$ odd
Contradiction: p and q are both even, so they have a common factor, 2.
Since a contradiction was reached, then the original assumption must be FALSE; therefore $\sqrt{2}$ cannot be written as p / q, so it is irrational.

Comparing Sizes of Finite Sets (let $|\mathrm{X}|$ denote the size of set X)

1) Count the elements
$A=\{a, b, c\}$
$X=\{x, y, z\}$
$|\mathrm{A}|=3$
$|\mathrm{X}|=3$

Therefore, $|\mathrm{A}|=|\mathrm{X}|$
2) Pair the elements

In a 1-1 mapping, every
element in a set appears at the end of exactly 1 arrow.
Therefore,
$|\mathrm{A}|=|\mathrm{X}|$
We do not need to know the actual size of either set to know they are the same size.

Comparing Sizes of Infinite Sets

Sets of Positive \& Whole numbers have the same size:
$\mathrm{P}=\{1,2,3,4,5, \ldots\}$

$\mathrm{W}=\{0,1,2,3,4, \ldots\}$

P-to-W $(x)=x-1$
W-to- $\mathrm{P}(\mathrm{x})=\mathrm{x}+1$

Sets of Positive \& Even numbers have the same size:
$\mathrm{P}=\{1,2,3,4,5, \ldots\}$

$\mathrm{E}=\{0,2,4,6,8, \ldots\}$

P-to-E $(x)=2(x-1)$
E-to- $\mathrm{P}(\mathrm{x})=(\mathrm{x}+2) / 2$

Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also have the same size?

$$
\mathrm{P}=\{1,2,3,4,5,6,7, \ldots\}
$$

$$
\mathrm{I}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also have the same size?

$$
\begin{aligned}
& P=\{1,2,3,4,5,6,7, \ldots\} \\
& I=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\} \\
& \begin{array}{ll}
P-t o-I(\text { odd } x)=(x-1) / 2 & \text { I-to- } \mathrm{P}(\mathrm{x}>=0 \mathrm{x})=2 \mathrm{x}+1 \\
\text { P-to-I }(\text { even } \mathrm{x})=(-\mathrm{x}) / 2 & \text { I-to- }(\mathrm{x}<0 \\
\mathrm{x})=-2 \mathrm{x}
\end{array}
\end{aligned}
$$

The First Infinity: X_{0}

The sets of positive, whole, even, and integer numbers all have the same size
$|P|=|W|=|E|=|I|=X_{0}$ (aleph-naught) Georg Cantor (1845-1918): "A set is infinite if its elements can be put into a 1-1 mapping with a proper subset of themselves."
Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite, Princeton, 1979.

Rationals(Q): X_{0} or Bigger?

 number at coordinate (X, Y). To show that $|\mathrm{Q}|=X_{0}$, produce a "path" that systematically walks through every (X, Y) coordinate in this lattice: visit a ${ }^{\text {st }}$ lattice point, a $2^{\text {nd }}$ lattice point, a $3^{\text {rd }}$ lattice point, ...

Rationals(Q): X_{0} or Bigger?

Real (R): X_{0} or Bigger

$|R|>X_{0}$: Proof by Contradiction (Diagonalization) Assume there is a 1-1 Mapping from P to $\mathrm{R}[0,1]$

$$
\begin{aligned}
& 1 \leftrightarrow .000000 \text {... } \\
& 2 \leftrightarrow .5000001 . \\
& 3 \leftrightarrow .333333 \ldots \\
& 4 \leftrightarrow .693147 \text {... } \\
& 5 \leftrightarrow .318309 \ldots \\
& 6 \leftrightarrow .101001 \text {... }
\end{aligned}
$$

Real (R): X_{0} or Bigger

$|R|>X_{0}$: Proof by Contradiction (Diagonalization)

 Assume there is a $1-1$ Mapping from P to $\mathrm{R}[0,1]$| 1 | 2 | 3 | 4 | 15 | 5 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 \rightarrow . Q$ | 0 | 0 | 0 | 0 | 0 | 0 | ... |
| $2 \rightarrow$. 5 | Q | 0 | 0 | 0 | 0 | 0 | ... |
| $3 \rightarrow .3$ | 3 | 3 | 3 | , | 3 | 3 | \cdots |
| $4 \rightarrow 6$ | 9 | 3 | 1 | | 4 | 7 | \ldots |
| $5 \rightarrow .3$ | 1 | 8 | 3 | | Q | 9 | |
| $6 \rightarrow .1$ | 0 | 1 | 0 | , | 0 | 1 | |

We can construct a value V that differs from every value in this list. Make the $i^{\text {th }}$ digit of V be $1+$ (the $i^{\text {th }}$ digit of the $i^{\text {th }}$ number_, or 0 if the $i^{\text {th }}$ digit is 9 . For this mapping:
$\mathrm{V}=.114212 \ldots$
So V is not on the list, leading to a contradiction, so there is no possible mapping.
We say $|R|=X_{1}$

The Continuum Hypothesis

In summary, $X_{0}=|P|<|R|=X_{1}$
The Continuum Hypothesis (unproved):
"There exists no set S such that $X_{0}<|S|<X_{1} "$
Although the Continuum Hypothesis (CH) remains unproved, it has been proven that most of mathematics remains the same regardless of whether the CH is TRUE or FALSE.

$\mathrm{R}[0,1] \times \mathrm{R}[0,1]:=X_{1}$ or Bigger?

$\operatorname{R}[0,1] \times \operatorname{R}[0,1]:=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}$ in $[0,1]$ and y in $[0,1]\}$
This set describes all points in a unit square.

Proof that $|\mathrm{R}[0,1] \times \mathrm{R}[0,1]|=X_{1}$
Let (x, y) be written $\left(. x_{1} x_{2} x_{3} x_{4} x_{5} \ldots, . y_{1} y_{2} y_{3} y_{4} y_{5} \ldots\right.$
Map (x,y) $\leftrightarrow . x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4} x_{5} y_{5}$
So $|\mathrm{R}[0,1] \times \mathrm{R}[0,1]|=|\mathrm{R}|=X_{1}$

English Statements(E): X_{0} or Bigger

Assume an alphabet with 26 letters, a space (written ~), and a period (written.); e.g., SEE \sim DICK \sim RUN.

1 A
2 B

26 Z
27 ~
28.

29 AA	Thus, we can list all possible statements in th following order: first all		
30 AB	one-letter statements in dictionary order then all		
\ldots	AZ		two-letter statements in
:---			
54			
$55 \mathrm{~A} \sim$			
56 A.		dictionary order, etc.	
:---			
mapping each positive			
number to a statement.			

57 BA
Therefore $|\mathrm{E}|=X_{0}$
784 ..
6.5×10^{18} SEE~DICK~RUN.

Computer Programs (C): X_{0} or Bigger?

Computer programs are written in a special alphabet that, like English, includes letters and punctuation. They can be considered statements written over this enlarged alphabet.

Therefore by the same reasoning process $|\mathrm{C}|=X_{0}$

Mathematical Functions (M): X_{0} or Bigger?

$|M|>X_{0}$: Look at functions mapping P to T / F Assume there is a 1-1 Mapping from P to M

We can construct a function f that differs from every f_{i} on this list. Make the $i^{\text {th }}$ value of f be the opposite of $f_{i}(i)$: e.g.

$$
f(1)=T, f(2)=F, f(3)=F, \ldots
$$

So $f(i)$ differs from every $f(i)$ and therefore is not on the list, leading to a contradiction, so there is no possible mapping

$$
|M|>X_{0}
$$

Mathematical Functions and Programs

$|\mathrm{C}|<|\mathrm{M}|$ so there are more mathematical functions than computer programs.
Therefore, some mathematical functions cannot be programmed on a computer.
Are there any "interesting" mathematical functions that cannot be programmed?

The Halting Problem

Does there exist a program H , which given any program P and data D determines whether or not P halts when run on D ?

Let $\mathrm{P}(\mathrm{D})$ denote running program P on data D . So $H(P, D)$ is either T or F, depending on whether or not $P(D)$ halts.
H itself must always halt and produce an answer telling whether $\mathrm{P}(\mathrm{D})$ halts.

Half Solving the Halting Problem

We can almost compute H by running program P on data D and returning T whenever $\mathrm{P}(\mathrm{D})$ halts; but such a function would never return a value if $\mathrm{P}(\mathrm{D})$ never halted. At some point an actual H would have to return F - when it knew that $\mathrm{P}(\mathrm{D})$ would never halt - if it could somehow know.

Proving the Halting Problem is Unsolvable

Assume $\mathrm{H}(\mathrm{P}, \mathrm{D})$ exists as described; define $\mathrm{G}(\mathrm{x})=$ if $\mathrm{H}(\mathrm{x}, \mathrm{x})$ then loop forever else halt; Does $G(G)$ halt?
If we assume it halts, we can prove it runs forever; if we assume it runs forever, we can prove it halts. Therefore, we have constructed a function G that cannot exist; therefore H cannot exist, because if H existed, we could easily construct G as described above.

H is a Powerful Theorem Prover

If H existed, we could use it as a powerful theorem prover in mathematics.
Fermat's Conjecture:
"There are no integral solutions to the equation: $a^{n}+b^{n}=c^{n}$ (with $\mathrm{n}>2$)"
Write a program that generates every possible integral value for ($\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{n}$ similar to generating rationals) and halts when $a^{n}+b^{n}=c^{n}$ and $\mathrm{n}>2$. The program halts iff the conjecture is FALSE.

Computability References

- Davis, Computability and Unsolvability, Dover, 1973.
- Hopcroft \& Ullman, Introduction to Automata Theory, Languages, and Computability, Addison Wesley, 1979.
- Minsky, Computation: Finite and Infinite Machines, Prentice hall, 1968.
- Rayward-Smith, A First Course in Computability, Blackwell, 1986.
- Walker, The Limits of Computing, Jones and Bartlett, 1994.

