Infinities in Mathematics and Computation

This lecture answers the following questions

• Are there different “infinities”?
• How does the number of mathematical functions compare with the number of computer programs (both are infinite)?
• Can we precisely specify a function that cannot be written as computer program (there are more functions than programs)?
Proof by Contradiction

- Assume a statement is TRUE.
- By mathematical logic, deduce the consequences of such a statement.
- If a statement known to be FALSE (a contradiction) is deduced, the original statement must be FALSE.

So, to prove S is TRUE, assume S is FALSE and show that such an assumption leads to a contradiction: then, S is proved TRUE.
\(\sqrt{2} \) is Irrational: a Proof by Contradiction

To prove \(\sqrt{2} \) is irrational, assume the opposite: that it is rational and can therefore be written as \(p/q \), where \(p \) and \(q \) are two integers that have NO common factors (this is important).

- \(\sqrt{2} = p/q \) Assumed above
- \(2 = p^2/q^2 \) Square both sides
- \(2q^2 = p^2 \) Multiply by \(q^2 \)
- \(p^2 \) is even It has a factor of 2
- \(p \) is even If \(p \) odd -> \(p^2 \) odd
- \(2q^2 = (2m)^2 \) Substitute \(2m \) for \(p \)
- \(2q^2 = 4m^2 \) Expand \((2m)^2\)
- \(q^2 = 2m^2 \) Divide by 2
- \(q^2 \) is even It has a factor of 2
- \(q \) is even If \(q \) odd -> \(q^2 \) odd

Contradiction: \(p \) and \(q \) are both even, so they have a common factor, 2.

Since a contradiction was reached, then the original assumption must be FALSE; therefore \(\sqrt{2} \) cannot be written as \(p/q \), so it is irrational.
Comparing Sizes of Finite Sets
(let |X| denote the size of set X)

1) Count the elements

A = \{a, b, c\}
X = \{x, y, z\}

|A| = 3
|X| = 3

Therefore, |A| = |X|

2) Pair the elements

A = \{a, b, c\} \quad \{a, b, c\}
X = \{x, y, z\} \quad \{x, y, z\}

In a 1-1 mapping, every element in a set appears at the end of exactly 1 arrow.
Therefore, |A| = |X|

We do not need to know the actual size of either set to know they are the same size.
Comparing Sizes of Infinite Sets

Sets of Positive & Whole numbers have the same size:

\[P = \{1, 2, 3, 4, 5, \ldots \} \]
\[W = \{0, 1, 2, 3, 4, \ldots \} \]

\[P \rightarrow W(x) = x - 1 \]
\[W \rightarrow P(x) = x + 1 \]

Sets of Positive & Even numbers have the same size:

\[P = \{1, 2, 3, 4, 5, \ldots \} \]
\[E = \{0, 2, 4, 6, 8, \ldots \} \]

\[P \rightarrow E(x) = 2(x - 1) \]
\[E \rightarrow P(x) = \frac{(x + 2)}{2} \]
Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also have the same size?

\[P = \{1, 2, 3, 4, 5, 6, 7, \ldots\} \]

\[I = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \]
Comparing Sizes of Infinite Sets (continued)

Do sets of Positive numbers and Integers also have the same size?

\[
P = \{1, 2, 3, 4, 5, 6, 7, \ldots\}
\]

\[
I = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}
\]

\[
P\text{-to-}I(\text{odd } x) = (x-1)/2 \quad I\text{-to-}P(x\geq 0 x) = 2x+1
\]

\[
P\text{-to-}I(\text{even } x) = (-x)/2 \quad I\text{-to-}P(x<0 x) = -2x
\]
The First Infinity: X_0

The sets of positive, whole, even, and integer numbers all have the same size

$$|P| = |W| = |E| = |I| = X_0(\text{aleph-naught})$$

Georg Cantor (1845-1918): “A set is infinite if its elements can be put into a 1-1 mapping with a proper subset of themselves.”

Rationals (Q): X_0 or Bigger?

Let Y/X represent the rational number at coordinate (X, Y). To show that $|Q| = X_0$, produce a "path" that systematically walks through every (X, Y) coordinate in this lattice: visit a 1^{st} lattice point, a 2^{nd} lattice point, a 3^{rd} lattice point, ...
Rationals (Q): X_0 or Bigger?

Let Y / X represent the rational number at coordinate (X, Y). Then the mapping is

$$\{1, 2, 3, 4, 5, 6, 7, 8, \ldots\}$$

$$\{1/1, 1/2, 2/2, 2/1, 3/1, 3/2, 3/3, 2/3, \ldots\}$$

Therefore, $|Q| = X_0$
Real (R): X_0 or Bigger

$|R| > X_0$: Proof by Contradiction (Diagonalization)
Assume there is a 1-1 Mapping from P to R[0,1]

1 \leftrightarrow .0 0 0 0 0 0 0 ...
2 \leftrightarrow .5 0 0 0 0 0 0 ...
3 \leftrightarrow .3 3 3 3 3 3 3 ...
4 \leftrightarrow .6 9 3 1 4 7 ...
5 \leftrightarrow .3 1 8 3 0 9 ...
6 \leftrightarrow .1 0 1 0 0 1 ...
Real (R): X_0 or Bigger

$|R| > X_0$: Proof by Contradiction (Diagonalization)

Assume there is a 1-1 Mapping from P to R[0,1]

We can construct a value V that differs from every value in this list. Make the i^{th} digit of V be 1+ (the i^{th} digit of the i^{th} number, or 0 if the i^{th} digit is 9. For this mapping:

V = .114212...

So V is not on the list, leading to a contradiction, so there is no possible mapping.

We say $|R| = X_1$
The Continuum Hypothesis

In summary, $X_0 = |P| < |R| = X_1$

The Continuum Hypothesis (unproved):

“There exists no set S such that $X_0 < |S| < X_1$”

Although the Continuum Hypothesis (CH) remains unproved, it has been proven that most of mathematics remains the same regardless of whether the CH is TRUE or FALSE.
R\([0, 1]\) x R\([0, 1]\): = \{(x, y) | x \text{ in } [0, 1] \text{ and } y \text{ in } [0, 1]\}

This set describes all points in a unit square.

Proof that \(\left| R\([0, 1]\) x R\([0, 1]\) \right| = X_1\)

Let \((x, y)\) be written \((.x_1x_2x_3x_4x_5 ... , .y_1y_2y_3y_4y_5 ...)\)

Map \((x, y)\) \(\leftrightarrow\) \(.x_1y_1x_2y_2x_3y_3x_4y_4x_5y_5 ...

So \(\left| R\([0, 1]\) x R\([0, 1]\) \right| = |R| = X_1\)
Assume an alphabet with 26 letters, a space (written ~), and a period (written .); e.g., SEE~DICK~RUN.

Thus, we can list all possible statements in the following order: first all one-letter statements in dictionary order then all two-letter statements in dictionary order, etc. mapping each positive number to a statement.

Therefore $|E| = X_0$

SEE~DICK~RUN.
Computer Programs (C): X_0 or Bigger?

Computer programs are written in a special alphabet that, like English, includes letters and punctuation. They can be considered *statements* written over this enlarged alphabet.

Therefore by the same reasoning process $|C| = X_0$
Mathematical Functions (M): X_0 or Bigger?

$|M| > X_0$: Look at functions mapping P to T/F

Assume there is a 1-1 Mapping from P to M

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>f_2</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>f_3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>f_4</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>f_5</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>f_6</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

We can construct a function f that differs from every f_i on this list.

Make the i^{th} value of f be the opposite of $f_i(i)$: e.g.

$f(1) = T, f(2) = F, f(3) = F, ...$

So $f(i)$ differs from every $f(i)$ and therefore is not on the list, leading to a contradiction, so there is no possible mapping

$|M| > X_0$
Mathematical Functions and Programs

$|C| < |M|$ so there are more mathematical functions than computer programs.

Therefore, some mathematical functions cannot be programmed on a computer.

Are there any “interesting” mathematical functions that cannot be programmed?
The Halting Problem

Does there exist a program H, which given any program P and data D determines whether or not P halts when run on D?

Let $P(D)$ denote running program P on data D.

So $H(P,D)$ is either T or F, depending on whether or not $P(D)$ halts.

H itself must always halt and produce an answer telling whether $P(D)$ halts.
Half Solving the Halting Problem

We can almost compute H by running program P on data D and returning T whenever P(D) halts; but such a function would never return a value if P(D) never halted. At some point an actual H would have to return F – when it knew that P(D) would never halt – if it could somehow know.
Proving the Halting Problem is Unsolvable

Assume H(P,D) exists as described; define
G(x) = if H(x,x) then loop forever else halt;
Does G(G) halt?
If we assume it halts, we can prove it runs forever; if we assume it runs forever, we can prove it halts. Therefore, we have constructed a function G that cannot exist; therefore H cannot exist, because if H existed, we could easily construct G as described above.
H is a Powerful Theorem Prover

If H existed, we could use it as a powerful theorem prover in mathematics.

Fermat’s Conjecture:

“There are no integral solutions to the equation: \(a^n + b^n = c^n\) (with \(n > 2\))”

Write a program that generates every possible integral value for \((a,b,c,n)\) similar to generating rationals) and halts when \(a^n + b^n = c^n\) and \(n > 2\).

The program halts iff the conjecture is FALSE.
Computability References

