
Quiz #1: Review of Python, Python Data Types, and Iteration ICS-33 Spring 2022

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You
can download the q1helper project folder (available for Friday, on the Weekly Schedule link) in which to
write/test/debug your code. Submit your completed q1solution.py module online by Thursday, 11:30pm. I will
post my solutions to EEE reachable via the Solutions link on Saturday morning (after Problem #1 is due).

1. (4 pts) Draw a picture illustrating how Python executes the following code. Standard pictures show each
name above a square box that contains the tail of an arrow, whose head points to an object. An object is shown
as an oval (or rounded-corner square) labelled by the type of the object, whose inside shows its value (which
may contain more names, arrows/references: lists can include or omit index numbers). When you change
an existing reference, lightly cross out the old arrow and then draw the new one appropriately. Draw the
picture with no crossing arrows (practice on a whiteboard and move things around if necessary).

 script module (execution starts here) m module (imported by script)
 import m x = 2
 x=['x’,m.x]
 m.x = x
 del m.x[0]
 m.y = m.x[0]
 x[0] = x

script m

module module

Print only this page, answer problem #1 on it, and then submit it as a .pdf file by Thursday at
11:30pm on Gradescope. You can also download this picture from Gradescope.

2. (4+1 pts) Define the solve_root function, which takes two arguments: (1) a function –call it f– (it is
univariate, called with one numeric argument (int or float) and returns a numeric result) and (2) a numeric
value –call it error; if error is not a positive value, raise an AssertionError exception (with an appropriate
error message). The solve_root function returns a reference to a function defined inside it: this internal
function takes two numeric arguments, call them negf and posf: f(negf) must be negative and f(posf)
must be positive; if not raise an AssertionError exception (with an appropriate error message). When we
call the returned function it returns a numeric value x such that f(x) is very close to 0.

The graph below shows a plot of f(𝑥𝑥) = 3𝑥𝑥4 + 3𝑥𝑥3 − 1.

Algorithm: After verifying negf and posf, we know that some root (some x where f(x) = 0) lies between
these values (because the sign of f(x) goes from negative at negf to positive at posf). Here is how we will
narrow the location of that point. Compute the midpoint between negf and posf: rebind either negf or posf
to the midpoint, depending on whether f evaluated at the midpoint is negative or positive (f(negf) must
always be negative and f(posf) must always be positive: consider 0 positive for these purposes). Continue
computing the midpoint and updating either negf or posf (shrinking the distance between them) until the
distance between negf and posf is <= error: then return the midpoint between negf and posf as the best
approximation to the root. When calling rooter(0,1) for the polynomial above, negf and posf are bound
to the following sequence of values.
iteration 0: negf=0 / posf=1
iteration 1: negf=0.5 / posf=1
iteration 2: negf=0.5 / posf=0.75
iteration 3: negf=0.5 / posf=0.625
iteration 4: negf=0.5625 / posf=0.625
iteration 5: negf=0.5625 / posf=0.59375
iteration 6: negf=0.578125 / posf=0.59375
iteration 7: negf=0.5859375 / posf=0.59375
iteration 8: negf=0.58984375 / posf=0.59375
iteration 9: negf=0.591796875 / posf=0.59375
iteration 10: negf=0.5927734375 / posf=0.59375
iteration 11: negf=0.59326171875 / posf=0.59375
iteration 12: negf=0.593505859375 / posf=0.59375
iteration 13: negf=0.593505859375 / posf=0.5936279296875
iteration 14: negf=0.59356689453125 / posf=0.5936279296875
At this point |negf-posf| ≤ .0001 so the function returns the midpoint of these two values.

If we define
def f(x):
 return 3*x**4 + 3*x**3 - 1

Note that f(0) is negative and f(1) is positive. If we
execute rooter = solve_root(f, .0001), then
calling rooter(0,1) returns a value close to 0.5936;
and f(.5936) is a value close to zero (0.00003).

Likewise note that f(-1) is negative and f(-2) is
positive. Calling rooter(-1,-2) returns a value close
to -1.1952; and f(-1.1952) is a value close to zero
(-0.00002).

For the fifth/last point, determine how rooter‘s function object (see box to right of graph) can store attributes
named f and iterations: f refers to the callable object bound to solve_root’s f parameter; iterations
remembers the number of times that were necessary to call the function f when solving a problem: for example,
after calling rooter(0,1) above, rooter.iterations evaluates to 14. Hint: function objects can store
attributes; initialize them carefully and use no globals.

Problems 3-4: Suppose that political parties wanted to store a database containing basic information about
voters by their zipcode. We will represent this information in a dictionary whose keys specify a
zipcode (int). Associated with each zipcode key is another dictionary whose keys specify a party (a
political party, a str); associated with each party key is the number of registered voters of that party in
the zipcode (int that is non-negative).

For example. a simple database might be as follows (note: the keys could appear in any order!)
 db = {1: {'d': 15, 'i': 15, 'r': 15},
 2: {'d': 12, 'r': 8},
 3: {'d': 10, 'i': 30, 'l': 20, 'r': 22},
 4: {'d': 30, 'l': 20, 'r': 30},
 5: { 'i': 15, 'l': 15, 'r': 15}}

I have printed this dictionary in an easy to read form. Python prints dictionaries on one line, and can print
their key/values in any order, because dictionaries are not ordered. Assume that any distinct str can
represent a political party: in the example above, 'd' could be democrat, 'i' could be independent, 'l'
could be libertarian, 'r' could be republican (and there might be others).

3. (12 pts) Define the following three functions that each take a database in the form above as an argument.
Write each function using combinations of comprehensions and calls to sorted. Each function is worth 4
points: 3 points for a correct solution, 4 points for a correct solution whose function body contains exactly one
statement, a return statement (and does not call any helper functions that you write); long return statements can
be written over multiple lines by using the \ character: so, the requirement is one statement, not one line. Hint:
write these functions using multiple statements first to get partial credit (all but 1 point), then if you can, transform
that code into a single statement using combinations of comprehensions (sometime with multiple loops) and
calls to sorted, to get full credit. No function should alter its argument.

• Use sequence unpacking (use _ for unneeded names); avoid indexing tuples anywhere but in a key lambda.
• In the notes, see how multiple statements can be rewritten as an equivalent statement comprehension.
• Sometimes use two loops in one comprehension. Complicated problems might require multiple

comprehensions each with its own loop.
• For sorting problems, sometimes build the thing that must be sorted using a comprehension and call sorted

on it, figuring out a key function; sometimes, sort something and then use the result in a comprehension to
build what needs to be returned.

(a) The by_diversity function returns a list of 2-tuples (whose first values are zipcodes and whose second
values are different number of parties in that zipcode) whose values are decreasing by the number of parties;
if two zipcodes have the same number of parties, these tuples should appear in increasing numerical order
by zipcode. For example, if db is the database above, calling by_diversity(db) would return the list
[(3,4), (1,3), (4,3), (5,3), (2,2)].

(b) The by_size function returns a list of zipcodes whose values are decreasing by the number of registered
voters in that zipcode; if the number of registered voters in two different zipcodes are the same, these
zipcodes should appear in increasing numerical order by zipcode. For example, if db is the database above,
calling by_size(db) would return the list [3, 4, 1, 5, 2]: zipcode 3 has 82 registered votes, zipcode 4
has 80, zipcode 1 has 45, zipcode 5 has 45, and zipcode 2 has 20.

 (c) The by_party function returns a list of parties whose values are decreasing by the number of registered
voters in that party, summed over all zipcodes; if the number of registered voters in two different parties are

the same, these parties should appear in increasing alphabetical order. For example, if db is the database
above, calling by_party(db) would return the list ['r', 'd', 'i', 'l']: there are 90 registered
republicans, 67 registered democrats, 60 registered independents, and 55 registered liberals. Hint: build
a set of all the parties by using a comprehension iterating over the database.

4. (4 pts) Define the registration_by_state function with two arguments: (a) a database in the form of the
one above and (b) a dictionary whose keys are str (states) each associated with a set of int (zipcodes in that
state). This function returns an outer dictionary associating a str (state) with an inner dictionary that associates
a str (party) with an int (the number of registered voters for that party for that state, over all zipcodes).

For example, if db is the database above calling registration_by_state (db,{'CA': {1,3}, 'WA':
{2,4,5}}) would return a dictionary whose contents are.
 {'CA': {'d': 25, 'i': 45, 'r': 37, 'l': 20}),
 'WA': {'d': 42, 'r': 53, 'l': 35, 'i': 15})}

If a state in the dictionary has no zipcodes in the database, it should not appear in the returned dictionary.

Hint: You can use multiple dict, multiple defaultdict, or any combination so long as the contents of each
dictionary is correct. I used defaultdicts for the outer and inner dictionaries, but then returned dicts for
outer and inner dictionaries as the final result (building them with comprehensions); my function body is 6
lines (not a requirement). In the parameterless function argument in the outer defaultdict, I used a lambda.

