
Quiz #2: File Reading, EBNF, Regular Expressions, and Python’s re Module ICS-33 Spring 2022

When working on this quiz, recall the rules stated on the Academic Integrity Contract that you signed. You can
download the q2helper project folder (available for Friday, on the Weekly Schedule link) in which to write your
Regular Expressions and write/test/debug your code. Submit your completed files for repattern1a.txt,
repattern1b.txt, repattern1c.txt, repattern2.txt, and your q2solution.py module online by Friday,
11:30pm. I will post my solutions to EEE reachable via the Solutions link on Saturday morning.

For parts 1a, 1b, 1c, and 2, use a text editor (I suggest using Eclipse’s) to write and submit a one line file.
The line should start with the ^ character and end (on the same line) with the $ character. The contents of
that one line should be exactly what you typed-in/tested in the online Regular Expression checker.

1a. (2 pts) Write a regular expression pattern that matches all numbers from 1-31 (interesting because it
represents all the possible days in a month). It would be trivial to write a huge choice with 31 different numbers:
^(1|2|3|...|20|30|31)$ requiring 87 characters: 2 anchors (^ and $), 2 parentheses, 30 | characters, 9
characters for single digit numbers, 20 characters for numbers 10-19, 20 characters for numbers 20-29, and 4
characters for 30 and 31. But you are required to write a shorter RE: look for commonalties. My solution is 22
characters (and I found many slightly longer variants). Put your answer in repattern1a.txt.

1b. (3 pts) Write a regular expression pattern that matches dates according to the following rules: dates are
written in three parts, in the order month, day, and optional year, where the parts are separated by the / character.
The month is a one or two digit number in the range 1-12 (with no leading 0 allowed). The day is a one or two
digit number in the range 1-31 (with a leading 0 allowed for one digit numbers). The year, if included, is a two
digit number (each digit can be 0: generally, XX means 20XX) or a four digit number between 1900-2099. Put
your answer in repattern1b.txt. Here are a few legal/illegal examples. Note there is no requirement that the
month and day make sense: 2/30 and 9/31 are both syntactically legal, although neither makes semantic sense.

Legal: Should Match : 2/10, 2/10/06, 2/10/1906, 12/31/2015, 12/3, 12/03, 2/31, 9/4/13
Illegal: Should Not Match: 02/10, 13/10, 21/13, 12/ 13, 5, 5/, 5//

Put your answer in repattern1b.txt.

1c. (2 pts) Write a regular expression pattern that matches the same strings described in part 1b. But in addition
for this pattern , ensure group 1 is the month; group 2 is the day; group 3 is the year. For example, if we execute
m = re.match(the-pattern, '10/13/2017’) then m.groups() returns ('10', '13', '2017'). Likewise, if
we execute m = re.match(the-pattern, '10/13’) then m.groups() returns ('10', '13', None): the None is
because the optional year part of the pattern is missing: the online tool omits showing such a group. There should
be no other numbered groups. Hint (?:...) creates a parenthesized regular expression that is not numbered as a
group. You can write one regular expression for both 1b and 1c, or you can write a simpler one for 1b (ignore
groups) and then update it for 1c by specifying the necessary groups. Put your answer in repattern1c.txt.

2. (5 pts) Write a regular expression pattern that matches strings representing trains. A single letter stands for
each kind of car in a train: Engine, Caboose, Boxcar, Passenger car, and Dining car. There are four rules specifying
how to form trains legally.
 1. One or more Engines appear only at the front; one Caboose only at the end. All other cars are between these.
 2. Boxcars always come in pairs: BB, BBBB, etc.
 3. There cannot be more than four Passenger cars in a series.
 4. One Dining car must follow each series of Passenger cars (and occur no where else).
These cars cannot appear anywhere other than these locations. Here are some legal and illegal exemplars. See
more legal/illegal exemplars in bm2.txt.
 EC Legal: the smallest train
 EEEPPDBBPDBBBBC Legal : simple train showing all kinds of cars
 EEBB Illegal: no caboose (everything else OK)
 EBBBC Illegal: three (odd number of) boxcars in a row

 EEPPPPPDBBC Illegal: more than four passenger cars in a row
 EEPPBBC Illegal: no dining car after passenger cars
 EEBBDC Illegal: dining car after box car

Put your answer in repattern2.txt.

3. (7 pts) EBNF allows us to name rules and then build complex descriptions whose right-hand sides use
these names. But Regular Expression (RE) patterns are not named, so they cannot contain the names of
other patterns. It would be useful to have named REs and use their names in other REs. In this problem,
we will represent named RE patterns by using a dict (whose keys are the names and whose associated
values are RE patterns that can contain names), and then repeatedly replace the names by their RE
patterns, to produce complicated RE patterns that contains no names.

Define a function named expand_re that takes one dict as an argument, representing various names and their
associated RE patterns; expand_re returns None, but mutates the dict by repeatedly replacing each name by its
pattern, in all the other patterns. The names in patterns will always appear between #s. For example, if p is the
dict {’digit’: r’[0-9]’, ’integer’: r’[+-]?#digit##digit#*’} then after calling expand_re(p), p
is now the dict {'integer': '[+-]?(?:[0-9])(?:[0-9])*', 'digit': '[0-9]'}. Notice that digit
remains the same, but each #digit# in integer has been replaced by its associated pattern and put inside a
pair of parentheses prefaced by ?:. Hint: For every rule in the dictionary, substitute (see the sub function in re)
all occurrences of its key (as a pattern, in the form #key#) by its associated value (always putting the value inside
parentheses), in every rule in the dictionary. The order in which names are replaced by patterns is not important.
Hint: I used re.compile for the #key# pattern (here no ^ or $ anchors!), and my function was 4 lines long (this
number is not a requirement).

The q2solution.py module contains the example above and two more complicated ones (and in comments,
the dicts that result when all the RE patterns are substituted for their names). These examples are tested in the
bscq2S21.txt file as well.

4. (6 pts) Write a function named multi_search, that takes two open files as arguments and returns a
list of 3-tuples as a result (based on the information in both files). The multi_search function reads
the first file, interpreting each line in it as a regular expression pattern. Then it reads the second file, and
for each line in the file, it produces a 3-tuple in the returned list, but only if the line matches (using
re.search: meaning the match is not required to begin at the start of the line) one or more of the regular
expression patterns read from the first file. Each 3-tuple contains the line number of the text matched in
the second file (starting at line 1), the line of text itself from the second file, and a list of all the pattern
line numbers (starting at line 1) from the first file that matched it: the list should show these numbers in
ascending order (which can be done without sorting). Close both files right before the function finishes.

For example if the files pats1.txt and texts1.txt store the information shown at the bottom of this
page, then calling the function as multi_search(open(pats1.txt'),open(texts1.txt')) returns the
following list: [(1, 'See Spot.', [1, 2]), (2, 'See Snoopy', [1]), (3, ' run.', [2]), (5,
'Run dogs run.', [1, 2, 3]), (6, 'Dogs are great.', [1, 2, 3])].

Hint: Call rstrip for each line read from each file; I used comprehensions, calls to enumerate, and the
re.compile function (for efficiency, since the same patterns never change).

pats1.txt
^[A-Z]

\.$

[a-z]\w*(es|s)\W

texts1.txt
See Spot.
See Snoopy
 run.
(pause)
Run dogs run.
Dogs are great.

