
Quiz #3: Classes with Overloaded Operators ICS-33 Spring 2022

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You
can download the q3helper project folder (available for Friday, on the Weekly Schedule link) in which to
write/test/debug your code. Submit your completed ttime.py and trackhistory.py modules online by
Thursday, 11:30pm. I will post my solutions to EEE reachable via the Solutions link on Friday morning.

1. (20 pts) Complete the class Time, which stores and manipulates times on a 24-hour clock. As specified
below, write the required methods, including those needed for overloading operators. Exceptions
messages should include the class and method names, and identify the error (including the value of all
relevant arguments). Hint see the type_as_str function in the goody.py module. You can’t use any of
Python’s other time-related modules.

1. The class is initialized with three int values (the hour first, the minute second, the second third; all with
default values of 0). If any parameter is not an int, or not in the correct range (the hour must be between 0
and 23 inclusive, the minute and second must be between 0 and 59 inclusive) raise an AssertionError
with an appropriate string describing the problem/values. When initialized, the Time class should create
exactly three attributes/self variables named hour, minute, and second (with these exact names and no
others attributes/self variables).

2. Write the __getitem__ method to allow Time class objects to be indexed by either (a) an int with value 1
or 2 or 3, or (b) any length tuple containing any combinations of just these three values: e.g., (1,3). If the
index is not one of these types or values, raise an IndexError exception with an appropriate string
describing the problem/values. If the argument is 1, returns the hour; if the argument is 2, return the
minute, and if the argument is 3, return the second. If the argument is a tuple, return a tuple with hour or
minute or second substituted for each value in the tuple. So if t = Time(5,15,20) then t[1] returns 5
and t[2,3] returns (15,20). Note that calling t[1] will pass 1 as its argument; calling t[1,2] will pass the
tuple (1,2) as its argument. In fact, t[1,1] will pass the tuple (1,1) and return the tuple (5,5).

3. Write methods that return (a) the standard repr function of a Time, and (b) a str function of a Time: str
for a Time shows the time in the standard 12 hour clock format: str(Time(13,10,5)) returns
'1:10:05pm'; str(Time(5,6,3)) returns '5:06:03am'; str(Time(0,0,0)) returns '12:00:00am'. It is
critical to write the str method correctly, because I used it in the batch self-check file for testing the
correctness of other methods.

4. Write a method that interprets midnight as False and any other time as True.

5. Write a method that interprets the length of a Time as the number of seconds that have elapsed from
midnight to the that time. So len(Time(0,0,0)) returns 0 and len(Time(23,59,59)) returns 86,399;
there are 86,400 seconds in a day: midnight to midnight.

6. Overload the == operator to allow comparing two Time objects for equality (if a time object is compared
against an object from any other class, it should return False). Note that if you define == correctly, Python
will be able to compute != by using not and ==.

7. Overload the < operator to allow comparing two Time objects. The left Time is less-than the right one if it
comes earlier in the day than the right one. Also allow the right operand to be an int: in this case, return
whether the length (an int, see above) of the Time is less-than the right int. If the right operand is any
other type, return NotImplemented. Note that if you define < correctly, Python will be able to compute Time
> Time and int > Time by using <.

8. Overload the + operator to allow adding a Time object and an int, producing a new Time object as a result
(and not mutating the Time object + was called on). If the other operand is not an int, return NotImplemented
(you may assume without checking that this argument is non-negative). Both Time + int and int + Time
should be allowed and have the same meaning. Hint: write code that adds one second to a Time; then iterate
over this code the int number of times: there are faster ways to do this, but this way is correct.

9. Write the __call__ method to allow an object from this class to be callable with three int arguments:
update the hour of the object to be the first argument, and the minute of the object to be the second
argument, and the second of the object to be the third argument. Return None. If any parameter is not legal
(see how the class is initialized), raise an AssertionError with an appropriate string describing the
problem/values.

The q3helper project folder contains a bscq31S21.txt file (examine it) to use for batch-self-checking your
class, via the driver.py script. These are rigorous but not exhaustive tests. Incrementally write and test your
class.

2. (5 pts) Complete the class TrackHistory, which should (a) use a dictionary (hint: I used defaultdict) to
remember a complete history of all the values binding to all the attribute names in the TrackHistory class; (b) be
able to retrieve the current and previous values of an attribute, by appending a _prev and (optionally a number)
suffix to the attribute’s name; for example _prev and _prev1 goes back to the previous value, _prev3 goes back
three previous values; _prev0 is another way to get the current value; (c) be able to retrieve a dictionary of the
current and historical binding using indexing (0 means current values, -1 means previous values, -2 means
previous to previous values, etc.). So o.x_prev3 returns the same value as o[-3][’x’].

The class is initialized with no arguments (it creates a dictionary with no items).
1. Write the __setattr__ method to (a) disallow any new attributes containing the string '_prev': raise a

NameError with an appropriate string describing the problem/values; (b) update both the dictionary of
historical values and current values (in self.__dict__) with the new value for an attribute name (except
for the name you use to store the historical dictionary itself). See the lecture notes. Hint: my method body
has about a half-dozen lines.

2. Write the __getattr__ method to allow the names of actual attributes to be followed by _prev or
_prevN where N is one or more digits specifying a non-negative number (e.g., _prev5, _prev0,
_prev2355, _prev001); hint: use a regular expression. If the name before the first _prev suffix is not an
attribute of the class, or the _prev suffix occurs anywhere but the very end of the name, raise a
NameError exception with an appropriate string describing the problem/values. If the _prev is followed
by a number too big (the attribute doesn’t have that many previous values) this method returns the value
None. Hint: my method body has about a half-dozen lines with a few conditional statements/expressions.

3. Write the __getitem__ method to allow the class objects to be indexed by a non-positive int: 0 as an
index returns a dictionary of the current values; -1 as an index returns a dictionary of the previous values.
-2 as an index returns a dictionary of the values previous to the previous values; etc. If the level of
previous values doesn’t exist for a name according to the supplied index, the dictionary should show the
value None associated with that name. If the index is positive, raise an IndexError exception with an
appropriate string describing the problem/values. Hint: use a comprehension to compute the returned
dictionary; my method body has about a half-dozen lines.

For example, assume that we first declare x = TrackHistory () and then execute x.a = 1 then x.a = 2 then
x.b = 1. Then x.a and x.a_prev0 evaluates to 2; x.a_prev evaluates to 1; and x.a_prev2 evaluates to None.
Also, x[0] evaluates to {'a': 2, 'b': 1}; x[-1] evaluates to {'a': 1, 'b': None}; and x[-2] evaluates to
{'a': None, 'b': None}. Generally x[-n]['name'] is the same as x.name_prevN.

The q3helper project folder contains a bscq32S21.txt file (examine it) to use for batch-self-checking your
class, via the driver.py script. These are rigorous but not exhaustive tests.

