
Quiz #4: Iterators/Generator Functions, Iterable Decorators ICS-33 Spring 2022 

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You 
can download the q4helper project folder (available for Friday, on the Weekly Schedule link) in which to 
write/test/debug your code. Submit your completed q4solution module online by Wednesday, 11:30pm. I will 
post my solutions to EEE reachable via the Solutions link on Wednesday evening right at 11:30pm.  

Remember, if an argument is iterable, it means that you can call only iter on it, and then call next on the 
value iter returns (for loops do this automatically). There is no guarantee you can call len on the iterable or 
index/slice it. You may not copy all the values of an iterable into a list (or any other data structure) so that 
you can perform these operations (that is not in the spirit of the assignment, and some iterables could produce 
an infinite number of values, so such copying is impossible). You may create local data structures storing as 
many values as the arguments or the result that the function returns, but not all the values in the iterable. In fact, 
your code must work on infinite iterables (see the primes and nth generators, which work together for testing). 

1. (20 pts) Write generators below (a.-e. worth 3 pts each, f. worth 5 pts) that satisfy the following 
specifications. You may not use any of the generators in itertools to help write your generators.  

a. The differences generator takes two iterables as parameters: it produces a 3-tuple for every pairwise 
difference in values produced by the iterables, showing the index (assume the index of the first value in 
each iterable is 1) and the different values in each iterable. For example 
    for i in differences('3.14159265', '3x14129285'): 
        print(i,end='')  

prints (2, '.', 'x') (6, '5', '2') (9, '6', '8'); the values in indexes 2, 6, and 9 are different. 
Hint: use a for loop controlled by a combination of zip and enumerate.  

b. The once_in_a_row generator takes one iterable as a parameter: it produces every value from the 
iterable, but it never produces the same value twice in a row. For example 
    for i in once_in_a_row('abcccaaabddeee'): 
        print(i,end='')     

prints abcabde: if there is a sequence of the same values, one following the other, only one is produced. 

c. The in_between generator takes an iterable as and two predicates (call them start and stop) as 
parameters: it produces every value v in the iterable that lie between values where start(v) returns True 
and stop(v) returns True (inclusive to these values). For example 
    for i in in_between('123abczdefalmanozstuzavuwz45z', 
                        (lambda x : x == 'a'), 
                        (lambda x : x == 'z')): 
        print(i,end='') 

prints abczalmanozavuwz. 

d. The pick generator takes an iterable and an int (call it n) as parameters: it produces lists of n values: 
the first list contains the first n values from the iterable; the second list contains the second n values 
from the iterable, etc. until there are fewer than n values left to put in the returned list. For example 
for i in pick('abcdefghijklm',4): 
    print(i,end='') 

prints ['a','b','c','d'] ['e','f','g','h'] ['i','j','k','l']. Hint: I called iter and next 
directly, building a list with  ≤ n values, so it doesn’t violate the conditions for using iterables. 



e. The slice_gen generator takes one iterable and a start, stop and step values (all int, with the same 
meanings as the values in a slice: [start:stop:step], except start and stop must be non-negative and 
step must be positive; raise an AssertionError exception if any is not). It produces all the values in what 
would be the slice (without every putting all the values in a list and slicing it). For example 
for i in slice_gen('abcdefghijk', 3,7,1): 

print(i,end='') 

prints the 4 values: 'd', 'e', 'f', and 'g': the 3rd, 4th , 5th, and 6th values (start counting at the 0th value).  

Hint: you may use the range class. Even if the iterable is infinite, this generator/decorator should work 
and produce a finite number of values. 

f. The alternate_all generator takes any number of iterables as parameters: it produces the first 
value from the first parameter, then the first value from the second parameter, ..., then the first 
value from the last parameter; then the second value from the first parameter, then the second 
value from the second parameter, ..., then the second value from the last parameter; etc. If any 
iterable produces no more values, it is ignored. Eventually, this generator produces every value 
in each iterable. Hint: I used explicit calls to iter, and a while and for loop, and a 
try/except statement; you can create a list whose length is the same as the number of 
parameters (I stored iter called on each parameter in such a list). For example 
for i in alternate_all('abcde','fg','hijk'): 
    print(i,end='') 

prints afhbgicjdke.   

2a. (4 pts) Lists, sets, and dictionaries are all mutable. Although we can execute code that changes the length of a 
list while it is being iterated over (by calling append or del), Python does not allow us to change the lengths of a 
set or dict while either is being iterated over. When Python runs the following code 
  s = set([1]) 
  for i in s: 
      s.add(2)     # this line raises: RuntimeError: Set changed size during iteration 

Why does Python allow us to change list sizes during iteration but not set/dict sizes? The rationale relates to 
the fact that we know what order the values in a list are iterated over, but not a set/dict. Because we know this 
order for a list we can determine how values added or deleted will be treated in the iteration; but we cannot 
determine this information for a set or dict, so mutating it is prohibited 

Write a list-like class (implementing some, but not all, list operations) named ListSI (SI stand for Special Iterator) 
that raises  a RuntimeError exception when executing code that attempts to change the length of a list (with append 
and del) while the list is being iterated over, mostly think iteration by a for loop, but also if __iter__ is called 
explicitly: i = iter(aListSI), print(next(i)), … Iterating over a list should leave the list unchanged. 

• Objects constructed from the ListSI class store 2 attributes: a real list (_real_list) and a count of the 
number of (nested) iterations in which this ListSI is being iterated on (_iter_count). This __init__ 
method, and other dunder methods in the ListSI class is already written. 

• The append and __delitem__ methods must raise the RuntimeError exception (see the import) from 
builtins, when they are called while the ListSI is being iterated over. 

• Inside the ListSI_iter class, implement __init__ and __next__ so that they cooperate to implement a 
list iterator (producing the values stored at index 0, then index 1, … in the ListSI) corretly, while also 
incrementing/decrementing _iter_count as new iterations are started and stopped. At any given time, 
iter_count is the number of nested iterations of the ListSI object. 



2b. (1 ps) Fill in the body of the for loop in the fool_it function with code that might normally be found in a 
loop, so that executing it causes the final append to raise a RuntimeError exception when it shouldn’t: that append 
is outside of any iterations. The code should not examine/manipulate any ListSI object. 


