
Quiz #5: Recursion and Functional Programming ICS-33 Spring 2022

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You
can download the q5helper project folder (available for Friday, on the Weekly Schedule link) in which to
write/test/debug your code. Submit your completed q5solution module online by Thursday, 11:30pm. I will post
my solutions to EEE reachable via the Solutions link on Friday morning.

 Ground Rules: The purpose of your solving problems on this quiz is to learn how to write directly-recursive
functions. Try to synthesize your code carefully and deliberately, using the general form of all recursive
functions and the 3 proof rules discussed in the notes for synthesizing recursive functions. Remember, it is
Elephants all the way down. Try to write the minimal amount of code in each function. Some errors will not be
easy to debug using the debugger or print statements; in such cases, use the 3 proof rules.

Use no for loops or comprehensions (which include for loops) in your code. I did not use local variables in
any of my functions; if you use local variables, each can be assigned a value only once in a call, and it cannot be
re-assigned or mutated; try to use no local variables. Of course, do not mutate any parameters. Do not use
try/except statements (avoid them by using if statements to check base cases explicitly). Do not call the
sorted function or the sort method on lists. See Problem 5 for slightly different rules.

1. (5 pts) Define a recursive function named compare; it is passed two str arguments; it returns one of three str
values: '<’, '=’, or '>’ which indicates the relationship between the first and second parameter (how these
strings would compare in Python). For example, compare('apples’,’oranges’) returns '<’ because in Python,
'apples’ < ’oranges’. Hint: My solution had 3 base cases that compare the parameter strings to the empty
string; the non-base case compares only the first character in one string to the first character in the other. Your
solution must not do much else: it cannot use relational operators on the entire strings, which would make the
solution trivial; it can use relational operators, but only on empty strings and single character strings. If you can
compare arbitrary strings, you could write this function trivially without recursion.

2. (5 pts) Define a recursive function named is_sorted; it is passed a list of values that can be
compared (e.g., all int or all str) it returns a bool telling whether or not the values in the list are in
non-descending order: lowest to highest, allowing repetitions. For example, is_sorted([1,1,2,3])
returns True; but is_sorted([1,2,3,1]) returns False. Hint: my solution had a base case including any
list that doesn’t have at least two values to compare against each other.

3. (5 pts) Define a recursive function named merge; it is passed two list arguments (each is guaranteed
to contain the same type of values and each is sorted in non-descending order; don’t bother to check these
conditions); it returns a new list containing all the values from both argument lists, in non-descending
order. The call merge([1,3,5,8,12],[2,3,6,7,10,15]) returns [1,2,3,3,5,6,7,8,10,12,15].

Hints: If either or both lists are empty, the problem can be solved without recursion; if both lists are non-
empty, one of the arguments to the recursive call will be a list slice that shorter by one value; the other
list remains the same length. Of course, you cannot just concatenate the lists and then call the sort
method or sorted function: the structure of the merge function itself must produce the correct ordering.
Remember that each argument list is already sorted.

4. (5 pts) Define a recursive function named sort; it is passed any unordered list (in which all the values
can be compared, e.g., all int or all str) and it returns a new list (not mutating the argument) that contains
every value from its argument list, but in sorted/non-descending order. You cannot call any of Python’s
functions/methods that perform sorting: the sort function itself must produce the correct ordering.

Hints: For any list that has at least 2 values, break the list in half (using slices, compute the first and
second halves of the list; each will be smaller than the original list); recursively call sort (the function
you are writing here) to sort each smaller list (don’t worry about how this is done: it’s elephants all the
way down); then use the merge function, written above, to merge these two sorted lists returned from
these recursive calls; finally, return the merged list, which contains all the sorted values in both smaller
lists. Note that merge requires its arguments be sorted, which they will be if they are computed by
calling sort recursively.

For example, calling sort([4,5,3,1,6,7,2]) would call sort recursively on the lists [4,5,3] and
[1,6,7,2]), returning the lists [3,4,5] and [1,2,6,7] respectively, which when merged would return
the list [1,2,3,4,5,6,7]. Note when the length of the list is even, both sublists will have the same
length; when the length of the list is odd, it is natural to divide it into two lists, the first will have one
one fewer value than the second.

5. (5 pts) General problem statement: Suppose that you are on a trip and buy a bunch of gifts to bring home
to your family. When you arrive at the airport for your trip home, you discover that you may carry only a
limited amount of weight on the plane. Determine the maximum value of gifts you can bring home while
staying within the weight limit.

Python problem statement: Define a recursive function named max_value; it is passed two arguments: (1) a
tuple of 2-tuples: each 2-tuple contains an int (representing the weight of a gift) followed by an int
(representing the value of that same gift); (2) the maximum amount of weight allowed. The max_value
function computes the maximum value of gifts you can bring home while not exceeding the weight limit. It
doesn’t compute which gifts (a similar but harder problem), but instead computes just the value of the gifts.

You might think you can solve this problem iteratively, by sorting the 2-tuples either by decreasing value or
increasing weight of the gifts, and then iterating through the list choosing which ones to bring. But that
won’t work. For example, calling max_value(((10,70),(15,80),(20,140),(20,150),(30,200)), 50)
would should return the value 360 (1st, 3rd, and 4th gift): we cannot choose gifts from the left so long as
their weight is not too big, nor choose gifts from the right so long as their weight is not too big, to get the
optimal value. But there is a “simple” recursive solution to this problem.

Hint: Use the 3 proof rules discussed in the notes. Better to stare at your code while thinking hard about these
rules than to try to debug the recursive code: it’s Elephants all the way down. Study the reasoning used in the
notes to solve the minimum number of stamps (mns) problem, which is similar to this one. Try to replicate
that reasoning for this problem. Here, the basic recursive structure decides whether or not to include a gift
(computing max_value for both cases); of course, weight limits may eliminate the possibility of including
some gifts. Note that the tuple will get smaller for each recursive call (one fewer gift to consider whether to
include it or not); the int (weight) can also get smaller, in those cases where the gift will be included in the
calculation; compute your base case appropriately.

Finally, although the ground rules stated at the top of this quiz allow for no local variables, in this function
you may write two: w,v = gifts[0] to simplify your code: storing the weight and value of the first gift in
the tuple; but you may not rebind w or v. If course you could always not create these bindings and just
write gifts[0][0] and gifts[0][1] to refer to these two values, but the resulting code would be harder to
read/understand/write.

