
x

 2 3 4 1

t

a

b

 7 6

y

 8 9

Quiz #6: Linked Lists, Trees, Inheritance ICS-33 Spring 2021

 When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You
can download the q6helper project folder (available for Friday, on the Weekly Schedule link) in which to
write/test/debug your code. Submit your completed q6solution module online by Thursday, 11:30pm. I will post
my solutions to EEE reachable via the Solutions link on Friday morning.

1. (6 pts) Examine the mystery method and hand simulate the call mystery(x,y); using the linked list below.
Lightly cross out ALL references that are replaced and Write in new references: don’t erase any references. It will
look a bit messy, but be as neat as you can. Show references to None as /. Do your work on scratch paper first.

def mystery(a,b):
 while b != None:
 t = a.next.next
 a.next.next = b
 a = b
 b = t

2. (2 pts) Draw the binary search tree that results from inserting the following values (in the following order) into an
empty binary search tree: 13, 10, 6, 3, 8, 5, 4, 16, 11, 17, 1, 2, 15, 19, 18, 14, 9, 20, 7, and 12. Draw the number for
each tree node, with lines down to its children nodes. Space-it-out to be easy to read. Answer the questions in the box.

Size =

Height =

For Problems 1 and 2, print the Answers.pdf file (in the q6helper folder and on Gradescope), write your answers on it, then upload it to
Gradescope by Thursday 5/19 at 11:30pm. If you cannot print files, write your answer as best you can on a blank sheet of paper and upload it
to Gradescope. Upload your solutions to problems 3-6 in the q6solution.py file the normal way to Checkmate by Thursday 5/19 at 11:30pm.

class LN:
 def __init__(self, value, next=None):
 self.value, self.next = value, next

class TN:
 def __init__(self, value, left=None, right=None):
 self.value, self.left, self.right = value, left, right

IMPORTANT: Submit your solution on Gradescope using
Answers.pdf in the q6helper folder and also downloadable from
Gradescope: point loss for using this document!

IMPORTANT: Submit your solution on Gradescope using
Answers.pdf in the q6helper folder and also downloadable from
Gradescope: point loss for using this document!

3a. (3 pts) Define an iterative function named append_ordered; it is passed two arguments: a linked list
(ll) whose values are ordered from smallest to biggest (they can be ints, strs, anything that can be
compared), and another value (v). It returns a reference to the front of a linked list that includes all the
values of the original linked list, and v, all in order. We call it like x = append_ordered(x,v). You may
create exactly one new LN, for storing the value of v. For example, if we defined

x = list_to_ll([1, 3, 8, 12])

and wrote x = append_ordered(x, 10) , then str_ll(x) returns the string "1->3->8->10->12->None".
Your code should work correctly regardless of whether the other value is added at the front, middle, or rear of
the linked list. You may not use any other data structures (e.g., you may not put all the values into a list, sort the
list, and then put all the values into a linked list), nor call any other helper functions: write the iterative code.

3b. (3 pts) Define a recursive function named append_ordered _r that is given the same arguments and
produces the same result as the iterative version specified above (and abiding by the same restrictions).
Also, use no looping, no local variables, etc. Hint: use the 3 proof rules to help synthesis your code. You
might first write code that always appends the value at the end of the linked list.

4. (4 pts) Write the recursive function max_depth; it is passed a binary (any binary tree, not necessarily a
binary search tree) and a value as arguments. It returns the maxim depth in the tree at which that value occurs.
Note the root is depth 0; its children are at depth 1; its grandchildren are at depth 2, etc. Generally, if a parent is
at depth d, its children are at depth d+1. In the binary tree below, max_depth(tree,1) returns 1, max_depth
(tree,2) returns 3, max_depth (tree,3) returns 2. The value may appear at many depths. If it is not in the
tree, return some negative number or None.
..1
....3
3
....3
..2
......2
....3
Hint: use the 3 proof rules to help synthesis your code. In my max_depth function, I wrote a recursive
helper function and returned the result it returns when called: this helper function had a third parameter
specifying the depth of the node at the top of the tree it is processing (0 for the actual root of the tree). My
helper function bound two local variables to recursive calls and then used them (it simplified my code).

5. (6 pts) Define a derived class named StringVar_WithHistory, based on the StringVar class in
tkinter; it remembers what sequence of values it was set to, and is able to undo each setting.

The StringVar class defines 3 methods: __init__ (self), get (self), and set (self,value). The set
method changes the state of the StringVar object to be value; the get method returns the string it is
currently set to. The StringVar_WithHistory derived class inherits get, overrides __init__ and set,
and defines an undo method.

Define the derived class StringVar_WithHistory with only the following methods (get is purely inherited):
• __init__ (self): initializes the base class; creates a history list for storing the values set is called with.
• set (self,value): if the value is different from the current value, set the StringVar to value and

remember it in the history list (if it is the same as the current value, do nothing: no new selection).
• undo (self): undo the most recently selected option by updating the StringVar and the history list

(but only if the currently selected option wasn’t the first one: that selection cannot be undone).

You cannot test StringVar_WithHistory by itself, but must test it using the OptionMenuUndo class,
which is in the download (itself class derived from OptionMenu). You can simulate the GUI (how I will

test it) or can actually build/test a version of the GUI that allows you to click the GUI to select options and
undo selections. See the simulation in the download (for how it should behave on one complex example).

Note: if you see the error message AttributeError: 'NoneType' object has no attribute
'globalgetvar' then you have not initialized the StringVar appropriately by calling its __init__ method.

