
Quiz #8: Empirical Measurements ICS-33 Spring 2022

When working on this quiz, recall the rules stated on the Academic Integrity statement that you signed. You
can download the q8helper project folder (available for Friday, on the Weekly Schedule link) in which to
write/test/debug your code. Submit your completed q8solution modules (81, 82) and empirical.pdf online by
Thursday, 11:30pm. I will post my solutions to EEE reachable via the Solutions link on Friday morning.

1a. (5 pts) Write a script that uses the Performance class and generates data that we can use to determine
empirically the complexity class of the closest_2d recursive function defined in the nearestneighbor.py
module. This function takes a list of (x,y) coordinates and finds the two that are closest together and returns
the distance between them. A simple/inefficient algorithm would just find the minimum after computing the
distance between all pairs of points, which would be O(N2). Call the evaluate and analyze functions on an
appropriately constructed Performance class object for lists of random coordinates (from sizes 100 to 25,600
doubling the size each time). Do 5 random timings for each size: each of these 5 timings should run on a
different random list of coordinates, and creating the list of random coordinates should not be timed. Use the
random.random function to generate each coordinate: it returns float values in the range [0,1). Hint: Write a
script with a create_random function that stores a random list of coordinates of the correct size into a
global name, then time the closest_2d function using that global name as an argument. If an exception is
raised for any size, print an error message for that size but continue collecting data: this might happen for
small sizes. I had about 20 lines in my module (including blank lines). See the file sample8.pdf (included in
the download) for what your output should look like: of course, your times will depend on the speed of your
computer (but the complexity class estimation will not). The process can take a few minutes. Do not time
the execution of the create_random function!

1b. (3 pts) Fill in part 1b of the empirical.doc document (included in the download) with the data that
you collect (or use the data in sample8.pdf if you cannot get your code to produce the correct results) and
draw a conclusion about the complexity class of the closest_2d function by seeing how much time it
takes to run as the size (in number of coordinates) of its input list doubles. Then predict how long this
function will take when running on an input list of 1 billion coordinates.

2a. (5 pts) Write a script that uses the cProfile module to profile all the functions called when the
closest_2d function is run on a random list with 25,600 coordinates. Generate the random graph first (do not
include its generation in the profile information) and then call CProfile.run so that it runs closest_2d on
that list; also specify a second argument, which is the file to put the results in (and the file on which to call
pstats.Stats) to print the results.

For the first one, sort the results decreasing by ncalls (print at most the top 12); for the second one, sort the
results decreasing by tottime (print at most the top 12). Hint: The notes show how to instruct the profiler
put the profile information into a file and then show how to access that file and format the results it displays
to the console; I had about a dozen lines in my module (including blank lines). It should take only a few
seconds to profile this code. See the file sample8.pdf (included in the download) for what your output
should look like: of course, your counts and times will depend on the speed of your computer and the
random list of coordinates generated.

2b. (2 pts) Answer the questions in part 2b of the empirical.doc document (included in the download)
with the data that you collect (or the data in sample8.pdf if you cannot get your code to produce the
correct results).

After editing empirical.doc for parts 1b and 2b, convert it into a .pdf document and submit the
document in that format on checkmate. You can use the lab machines to do the conversion.

