Artificial Intelligence & Machine Learning

ICS 90 Guest Lecture
Prof. Alex Ihler
What is AI?
Rapid Progress in AI

- Autonomous Vehicles

- CMU “Sandstorm”
 - 2004
 - (DARPA Grand Challenge)

- Stanford “Stanley”
 - 2005
 - 2007

- Nevada license
 - 2011

- Google self-driving car
 - 2014
 - 2016
Rapid Progress in AI

• Games

Checkers “Chinook”

Jeopardy “Watson”

Go “AlphaGo”

UCI alum Yutian Chen with DeepMind’s team playing Ke Jie
Rapid Progress in AI

• ...and more games...

AI Competitions:

- **DOTA2 PvP (OpenAI)**
 - 2010 – present
 - [Website](https://cilab.sejong.ac.kr/sc_competition/)

- **Super Smash Bros (MIT)**
 - 2016 – present
 - [Website](http://www.pacmanvghosts.co.uk/)

- **Angry Birds**
 - 2012 – present
 - [Website](http://www.aibirds.org/)

- **StarCraft**
 - 2010 – present
 - [Website](https://cilab.sejong.ac.kr/sc_competition/)
Still a Long Way to Go
AIs

- AI as an assistant
 - Simplify interface, "do what you want"
AIs

• AI as an assistant
 – Simplify interface, “do what you want”

• AI as an opponent
 – Responsive & “realistic” behavior
 – Train; evaluate play quality; ...
What is ML?

• How can a computer “learn” from experience (observed data)?

• Less than the whole of AI?
 – Just one part of intelligence...

• More than just AI?
 – Applicable to many “practical” problems
 – Making sense of data automatically
 – Found in
 • Data mining & information retrieval
 • Computational biology
 • Signal processing
 • Image processing & computer vision
 • Data compression and coding
Supervised learning

- Observe examples; try to predict for new data

\[y \approx f(x) \]
Supervised learning

- Observe examples; try to predict for new data

\[y \approx f(x) \]
Supervised learning

- Observe examples; try to predict for new data

\[y \approx f(x)? \]
Prediction

- Based on past history, predict future outcomes

Wall Street

Sun Microsystems, Inc. (SUNW) Nasdaq Nat. Whl.

<table>
<thead>
<tr>
<th>Date</th>
<th>Open</th>
<th>High</th>
<th>Low</th>
<th>Close</th>
<th>Adj Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Mar-2000</td>
<td>40.12</td>
<td>47.38</td>
<td>43.38</td>
<td>43.09</td>
<td>33.86 M Chg -1.75</td>
</tr>
</tbody>
</table>

Sun Microsystems: 43.69 (Daily)

Netflix

Movies You'll Love

Based on your ratings

1. Rate your genres.
2. Rate the movies you've seen.

New Suggestions for You

Based on your recent ratings

- *Crawford 2-Disc Set*
- *Moses*
- *The Bible Collection: Moses*
- *Lewis and Clark: Great Journey West*

You have 1279 Suggestions from 398 ratings.
Classification

• Discriminating between two (or more) types of data

• Example: Spam filtering

Cures fast and effective! - Canadian *** Pharmacy
#1 Internet Inline Drugstore Viagra Our price $1.15
Cialis Our price $1.99 …

Interested in your research on graphical models -
Dear Prof. Ihler, I have read some of your papers
on probabilistic graphical models. Because I …
Classification

- Example: face detection
Structured prediction problems

- Given an observation x, predict structured set of targets y
Structured prediction problems

- Given an observation x, predict structured set of targets y
- May layer multiple models capturing different aspects

Pose estimation:

Speech to text; translation:

Where is the train station?

Donde esta la estacion de trenes?
Tools for Machine Learning

• Probability and Statistics
 – Allows computing with / about uncertainty
 – Combine multiple sources of (uncertain) information
 – Search for “simple” explanations

• Also: optimization, information theory, ...

• Classes
 – CS171, Intro to AI
 – CS178, Machine Learning
 – CS177, Probability in Computer Science
 – CS175, Projects in AI
 – CS179, Graphical models
 – CS172, Neural networks & deep learning
Collaborative Filtering (Netflix)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(slide from BellKor)
Latent variable models

R_{ij}
Crowdsourcing

- Use “workers” to evaluate data or make predictions
 - Workers are unreliable: ask multiple workers
 - Combine results using a probabilistic model
Conclusions

• Artificial Intelligence
 – Search, planning, making decisions

• Machine learning
 – Organizing and understanding observed data
 – Finding simple representations
 – Making predictions in complex systems
 – Approximate computations for difficult problems

• Related disciplines
 – Computer vision
 – Computational biology

• Lots of great classes: 171, 177, 178, 179, 175, ...
• Lots of great faculty here at UCI