

An Introduction to Quantum Computation

Sandy Irani Department of Computer Science University of California, Irvine "Simulating Physics with Computers" Richard Feynman - Keynote Talk, 1st Conference on Physics and Computation, MIT, 1981

 "Simulating Physics with Computers" Richard Feynman - Keynote Talk, 1st Conference on Physics and Computation, MIT, 1981

Is it possible to build computers that use the laws of quantum mechanics to compute?

The New York Times

The Week in Tech: Google's Quantum Leap

The company can run esoteric calculations on exotic new hardware faster than is possible on a supercomputer. It's an achievement of little practical use, but still important.

Google's chief executive of Google, Sundar Pichai, with its quantum computer. Google

By Jamie Condliffe and Nicole Perlroth

Oct. 25, 2019

Church-Turing Thesis

"Until recently, every computer on the planet – from a 1960's mainframe to your iPhone...- has operated by the same set of rules. These were the rules that Charles Babbage understood in the 1830's and that Alan Turing codified in the 1930's. Through the course of the computer revolution, all that has changed at the lowest level are the numbers: speed, amount of RAM and hard disk, number of parallel processors."

"But quantum computing is different."

--Scott Aaronson NY Times Oct 30, 2019

What's so special about a Quantum Computer?

Quantum Superposition

Quantum Superposition

Quantum Superposition

Implementations of a "Qubit"

- Energy level of an atom
- Spin orientation of an electron
- Polarization of a photon.

• NMR, Ion traps,...

<u>Information: 1 Bit Example</u> (Schrodinger's Cat)

- <u>Classical Information</u>:
 A bit is in state 0 or state 1
- <u>Classical Information with</u> <u>Uncertainty</u>
 - Bit is 0 with probability p₀
 - Bit is 1 with probability p_1
 - State (p₀, p₁)
- Quantum Information
 - State is a <u>superposition</u> over states 0 and 1
 - State is (α_0, α_1) where α_0, α_1 are complex.

<u>Information: 1 Bit Example</u> (Schrodinger's Cat)

- <u>Classical Information</u>:
 A bit is in state 0 or state 1
- <u>Classical Information with</u> <u>Uncertainty</u>
 - Bit is 0 with probability p_0
 - Bit is 1 with probability p_1
 - State (p₀, p₁)
- Quantum Information
 - State is a <u>superposition</u> over states 0 and 1
 - State is (α_0, α_1) where α_0, α_1 are complex.

with prob p_1

X=0 with prob p_0

<u>Information: 1 Bit Example</u> (Schrodinger's Cat)

- <u>Classical Information</u>:
 A bit is in state 0 or state 1
- <u>Classical Information with</u> <u>Uncertainty</u>
 - State (p_0 , p_1)
- Quantum Information
 - State is partly 0 and partly 1
 - State is (α_0, α_1) where α_0, α_1 are complex.

Information: n Bit Example

00

د ک

0 0

رى بە

00

دی

د ک

0 0

- $(\alpha_0, \alpha_1, ..., \alpha_2^{n})$, where a is complex

Information: n Bit Example

- <u>Classical Information</u>:

 State of n bits specified by a string x in {0,1}ⁿ
- <u>Classical Information with</u> <u>Uncertainty</u>
 - State described by probability distribution over 2ⁿ possibilities
 - $-(p_0, p_1, ..., p_{2^{n}-1})$
- Quantum Information
 - State is a superposition over 2ⁿ possibilities
 - ($\alpha_0, \alpha_1, ..., \alpha_2^{n}$), where a is complex

Information: n Bit Example

- <u>Classical Information</u>:

 State of n bits specified by a string x in {0,1}ⁿ
- <u>Classical Information with</u> <u>Uncertainty</u>
 - State described by probability distribution over 2ⁿ possibilities
 - $-(p_0, p_1, ..., p_{2^{n}-1})$
- <u>Quantum Information</u>
 - State is a superposition over 2ⁿ possibilities
 - $(\alpha_0, \alpha_1, ..., \alpha_2^{n})$, where a is complex

 A quantum kilobyte of data (8192 qubits)

Encodes 2⁸¹⁹² complex numbers

2⁸¹⁹² ~ 10²⁴⁶⁶

(Number of atoms in the universe $\sim 10^{82}$)

State of n qubits (α₀,..., α₂ⁿ-1) stores 2ⁿ complex numbers:

Rich in information

How to use it? How to access it?

Quantum Measurement

- State of n qubits ($\alpha_0, ..., \alpha_2^{n}_{-1}$)
- If all n qubits are examined:

 Outcome is
 010 with probability |α₀₁₀|².

Quantum Measurement

- State of n qubits ($\alpha_0, ..., \alpha_2^{n}$)
- If all n qubits are examined:
 - Outcome is 010 with probability $|\alpha_{010}|^2$.
 - The measurement causes the state of the system to change:
 - » The state "collapses" to 010

Ingredients in Computation

- Store information about a problem to be solved
- Manipulate the information to solve the problem

• Read out an answer

Computer Circuits

Quantum Circuits

[Image from www.thehum.info, due to Dr. Glen MacPherson]

[Figure from gwoptics.org]

Quantum Circuits

Quantum Algorithms

Manipulate data so that negative interference causes wrong answers to have small amplitude and right answers to have high amplitude, so that when we measure output, we are likely to get the right answer.

Factoring

• Given a positive integer, find its prime factorization.

Factoring

• RSA-210 =

 Can Quantum Computers Be Built?

- Key challenge: prevent decoherence (interaction with the environment).
- Can factor N=15 on a quantum computer
- Larger problems will require quantum error correcting codes.

nature

Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Bolxo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhl¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Glustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,2}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung¹¹³, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

Layout of Google's "Sycamore" Quantum Processor

Picture from Nature Vol 574, October 24, 2019

Select a "random" quantum circuit (set of interactions) Then repeatedly sample the outcome. One repetition -> one 53-bit string

How Do You Check a Quantum Computer?

Google estimated that it would take 10,000 years to check using 100,000 conventional computers running the fastest algorithms currently known.
 Simulating the 53 qubit machine requires storing 2⁵³ = 9 quadrillion = 9 x 10¹⁵ complex numbers

 Instead...check smaller versions of the same problem – still using massive amounts of computing power.

Science

Google researchers in Santa Barbara, California, say their advance may lead to near-term applications of quantum computers. ISTOCK.COM/JHVEPHOTO

IBM casts doubt on Google's claims of quantum supremacy

By Adrian Cho Oct. 23, 2019 , 5:40 AM

Next Steps...

- Simulate quantum physics of chemical reactions.
- Quantum error correction

Quantum Computing and Information

Research on Quantum Algorithms

• What problems can we compute with an idealized quantum computer of the future?

1000+ Error-Corrected Qubits

• What problems can we compute more efficiently with ~100 noisy qubits? NISQ computers: Near-term

Intermediat-Scale Quantum Computers

Quantum Computers for Simulation in Physics

My Research

- Design efficient algorithms on a quantum (or classical) computer that will provably compute properties of a quantum system.
 - For what kinds of systems is this possible?
 - Or: give mathematical evidence that there is no efficient way to solve this problem.

Ways to Learn More

- CS 166 Quantum Computing Prerequisites:
 - Linear Algebra (ICS 6N or Math 3A)
 - Design and Analysis of Algorithms (CS 161)

• Quantum Computing Club @ UCI https://www.qc-uci.club