Capstone Project: From Software Engineering to “Informatics”

Hadar Ziv, Sameer Patil
Department of Informatics
University of California, Irvine
ziv@ics.uci.edu
UC Irvine / Orange County, CA

Irvine/Orange County close to Hollywood/Los Angeles, but we have our own identity…
UCI / ICS / Project Course

• (formerly) Department of ICS
 – Established 1968 (recently celebrated our 40th)
 – Undergraduate and graduate-level degrees

• Project course in software design
 – Since the 1980s
 – Small group project
 • 4-5 students per team
 • Single quarter (10 weeks)
 – Project only
 • Everything was taught/should have been learned prior
 – External client
 • Must be “real” project, “real” requirements, “real” client needs
Project Course Objectives

• Hands-on experience
 – Learning by doing!

• Real-world experience
 – “real” projects of value to “real” customers
 – Customers receive not only software, but a complete set of SE deliverables
 – Software is either deployable, prototype or proof-of-concept (“trial run”)
 • UCI University Club http://www.uclub.uci.edu/

• Technical skills / SE skills
 – Requirements elicitation, use cases, user stories
 – HCI, UI design, web design
 – Software architecture, OOAD/UML, OO programming
 – Lifecycle models, incremental and iterative, Agile/SCRUM

• Non-technical / people skills
 – Project management, team / time / resource management skills
 – Communication / collaboration / coordination skills
School of ICS / Informatics

• Donald Bren School of ICS
 • Opened/Moved to Bren Hall 2007
 – Only CS school in University of California
 • 1,000 undergraduates / 300 graduate students
 • Several departments, including Informatics

– Informatics Faculty with degrees/background in
 • HCI/HCC/CSCW
 • Psychology/cog sci
 • Ethnography
 • Anthropology...
Informatics Curriculum

– Broader curriculum covering topics such as
 • HCI / user-centered design / UI and web design
 • Computer supported collaborative work
 • Social analysis / Social aspects of computing
 • Project management
 • Usability engineering
 • Information visualization, Information/data mining, ubiquitous computing...

– Extend the project course to three quarters
 • To include and require application of such topics
 • Required course in the final year of study
 • Core requirement towards earning an Informatics degree
Informatics Capstone Project

• We’ve been teaching the year-long project
 – Here is what people are saying…

• We’ve observed three kinds of changes with the increase in project duration
 – Some aspects increased proportionally
 – Some remained constant or attenuated
 – Some increased disproportionally
Equi-Proportional “Growth”

• Project scope
 – Scope / Size / Complexity are proportionally larger
 • E.g., web systems

• Software requirements
 – The number / extent / complexity of use cases / user stories
 • E.g., healthcare-system requirements

• Software development
 – Design / implementation / deployment effort

• Grading / Assessment
 – Project-based
 • Project-based “events”, such as document-delivery milestones
 • Team-based “events”, such as live demos in class and to customers
 – Individual-based
Constant / Little or No Growth

• Infrastructure setup
 – Hardware, web space, web servers, etc.
 – Software tools, web tools, PM/time-tracking tools, etc.

• Team building
 – Getting to know each other, their users, customers, stakeholders
 – Team room, project wall, etc.

• Learning curve / Time and effort
 – Programming languages, software tools, web tools, PM/time-tracking tools, etc.
Disproportionally Large Growth

• In the single-quarter project,
 – Little time for serious usability engineering
 – Straightforward project management
 – Little time for serious testing / quality readiness

• In the year-long project,
 – Usability planning, iterative testing, incorporating test results and feedback
 – Project planning, scheduling, execution and monitoring
 – Testing at multiple levels, regression testing, release planning, multiple builds, releases, production-quality
What Works Well

• We continue to be pleasantly surprised that
 – HCI/HCC works
 • Students and customers took to human-centered design
 • Students promoting HCC in their jobs/internships
 – SE works
 • Iterative/incremental/agile/test-driven development
 • Students delivering complex software of high quality
 – Team-based, active learning works
 • Students learning within their teams, peer reviews across teams, and active learning in the classroom
What Doesn’t Work so Well

• We continue to face challenges of
 – Senioritis
 – Students who do less, contribute less, and ride on the coattails of others
 – Students struggle to maintain focus/motivation and creativity/productivity over three quarters
 – Customers struggle to maintain focus/motivation over three quarters
Final Remarks

• The students are learning by doing
 – Real users with real needs
 – Real requirements from real customers
 – Apply all elements of prior Informatics curriculum
 – Iterative and incremental development
 – Peer reviews, active-learning in the classroom

• We are learning by doing
 – Actively teaching the course
 – Iterative and incremental course development
 – Continuous feedback / reflection / improvement

• If you want to start a Capstone project
 – Good papers in this session and in many other sources
 – Talk to us / We can help / We can learn from each other!
Thank you!

• Questions?
What is Informatics

• Overheard at CSEET 2010…
 – Computing is not just about code (Lynn Carter, 03/10/2010)
 – Need solutions that actually help users, work for users (Lynn Carter, 03/10/2010)
 – Human aspects such as usability are important (Mary Shaw, 03/10/2010)