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Abstract 
The Bayesian classifier is a simple approach to 
classification that produces results that are easy 
for people to interpret. In many cases. the 
Bayesian classifier is at least as accurate as much 
more sophisticated learning algorithms that 
produce results that are more difficult for people 
to interpret. To use numeric attributes with 
Bnyesian classifier often requires the attribute 
values to be discretized into a number of 
intervals. We show that the discretization of 
numeric attributes is critical to successful 
application of the Bayesinn classifier and propose 
a new method based on iterative improvement 
search. We compare this method to previous 
approaches and show that it results in signiticrmt 
reductions in misclassification error and costs on 
an industrial problem of troubleshooting the local 
loop in a telephone network. The approach can 
take prior knowledge into account by improving 
upon a user-provided set of boundxy points, or 
can operate autonomously. 

Introduction 
This research was motivated by a problem of 
discovering how to boubleshoot a telephone network 
using a data base of repair records provided by 
NYNEX (the primary local phone company for New 
York and New England). When NYNEX customers 
have problems with their lines, they call a special 
number to report the problem. A phone company 
representative takes information from the customer 
about the symptoms of the trouble and creates a 
trouble report. At the same time. the representative 
initiates electrical tests on the line--the Mechanized 
Loop Test, or MLT. The data gathered by the MLT, 
which include voltage readings, for example, are 
attached to the trouble report, which is then sent to a 
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Maintenance Administrator (MA) for diagnosis. The 
MA uses the information from the trouble report. 
MLT, and Screening Decision Unit to make a 
high-level diagnosis of the trouble. Based on this 
diagnosis. the MA determines the part of the local 
loop to which a reptir technician should be 
dispatched: the central office (PDI) , the cable (PDF), 
or the customer’s home (PDO). The MA can also 
specify that the trouble should be held for additional 
testing (PDT). 

In this paper, we explore the use of Bayesiaa 
classifiers for dispatching the repair technician. The 
Bayesian classifier is trained on a database of repair 
records. Each repair record contains 21 variables 
encoding information on the type of switching 
equipment and various voltages and resistance 
measurements. Each repair record was reviewed by 
between 2 and 4 experts who indicated what type of 
dispatch they would recommend given this 
information.’ For each repair record, we constructed 
a set of acceptable recommendations where an 
acceptable recommendation is defined to be an 
answer that any of the experts gave. However, if 
three experts gave the same recommendation and one 
expert gave a different recommendation, we used the 
diagnosis proposed by the majority. In all other cases, 
we consider it acceptable for an automated system to 
react like any of the experts would on a particular 
case. Using this definition of acceptable. there are an 
average of 1.84 acceptable diagnoses for each case. 

We selected Bayesian classifiers for this task for 
four reasons: 

1. One might initially believe that the technician who 
fixed the problem would be able to indicate the Inca- 
don to which the technician should have been dis- 
patched. However. for B variety of reasons, (Danylti 
& Provost, 1993). this information is not very reliable. 
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It has bee” found that they ca” be at least as 
accurate as more “sophisticated” learning 
methods (e.g., Kononenko, 1990). 
Bayesian classifiers produce a” estimate. of the 
probability that an example belongs to each 
class. This probability estimate may be used to 
determine the most likely class of a training 
example, or the class that will have the least 
expected cost of misclassification errors. While 
other learners (e.g., decision trees, Quinlan, 
1986) may be extended to produce probability 
estimates, in practice, these estimates do not vary 
continuously ;md do not provide fine-grtined 
information to perform well at determining the 
least expected cost of misclassification errors 
(e.g., Pazzmi, Met-z. Murphy. Ali, Home, 
and Brunk, 1994). 
The. Bayesinn classifier reveals information that 
some experts find more useful than other models 
such as decision trees (Kononenko, 1991). The 
results of the Bnyesian classifier are conditional 
probabilities that may be viewed as simple, one 
attribute rules. 
It is possible to take advantage of expert 
knowledge on the critical values of continuous 
variables. a”d revise this information. as we shall 
describe. 

However, a” some problems, the simple Bayesian 
classifier is much less accumte than other learners. I” 
Pazwni (1995). we addressed one possible problem 
with Bay&m classifiers in tint they assume attribute 
values are independent within each class. However. 
the methods used to detect and correct for violations 
of this assumption did not have a” effect on the 
accuracy or misclassification cost of the Bayesinn 
classifier on the telephone troubleshooting database. 
In this paper, we address another problem with using 
Bayesian classifiers on practical problems: the 
treatment of numeric data. We also address issues 
that occw when learning from data in which there is 
disagreement xnong experts and exploiting 
information from experts on how numeric data may 
be discretized. 

Background 
The Bayesian classifier (Duda & Hart, 1973) is.a 
probabilistic method for classification. It can be used 
to determine the probability that a” example j 
belongs to class Ci given values of attributes of the 
example: P(C~IAI=VI, & . ..& A,=V.,) . If the 
attribute values are independent, this probability is 
Drooortio”ol to: 

Both P(AL=V$~) and P(Ci) may be estimated from 
training data. ‘Ihis classifier. which aswnes attribute 
independence. has bee” called the simple Bayesia” 
classifier, the naive Bayesian classifier, the idiot 
Bayeskm classifier. and the fust-order Bay&m 
classifier. To determine the most likely clzxss of the 
example, the probability of each class may be. 
computed and the exznple assigned to the class with 
the highest probability. The probability of each class 
may also be used to determine the class with the least 
expected cost of misclassification errors. 

NYNEX has implemented a rule-based expert 
system, MAX (Rabinowitz, et al.. 1991). that is used 
to determine the location of a malfunction for 
customer-reported telephone troubles. MAX is a 
rule-based system that makes its diagnosis based 
upon the results of the MLT as well as other general 
infonntion, such as the type of switching equipment 
through which the customer’s line goes. Since its 
deployment in 1990, it has been modified and 
expanded for other related tasks in NYNEX as well. 
Among its benefits are that it is fast, consistent, and 
reduces the number of incorrect dispatches. One of 
MAX’s limitations is that it is not always correct 0” 
the database we analyzed, MAX gives a diagnosis 
that does not match one of the acceptable answers on 
33.8% of the 500 examples. Although this error rate 
may seem high, MAX generally performs at least as 
well as experienced MA’s, In this work, we’ll 
compare the classification rate of the Bnyesia” 
classifier to the classification rate of MAX. 

Numeric Values in Bayesian classifiers. 
To classify 3” example with value Vki for attribute 
AI, Bnyesinn classifiers need to use P(Ak=V$i). If 
attributes have nominal values. this CM be easily 
determined by finding the proportion of examples in 
the tnining set of clilss i that have the value Vkj for 
attribute AL. If two experts disagree about the 
classification of an example, the example is split 
among &asses in proportion to the opinions of 
experts. For example, if two experts call a” example a 
PDT and one calls the example a PDI, the example is 
considered 2/3 PDT and l/3 PDI when updating the 
counts of exzxnpies of each class and the counts of 
examples with each attribute value within in each 
class. 

When attributes have numeric values. a number of, 
nppronches may be used. The Bayesitm classifier used 
in Pazzani et al. (1994) was derived from the 
Bay&a” classifier used in Langley & Sage (1994). 
This computed P(AI,=VL,IC;) for numeric data by 
assuming that within each class, the values for a” 
attribute are normally distributed about some mean. 
It found the mea” and standard deviation for each 
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Resistance 

Figure 1. Frequency of values of resistances within some classes do not appear to be normally distributed. 

class of a numeric attribute. and used this information 
to determine the probability that a” attribute had a 
give” value. This Bayesin” classifier was much less 
accwate than decision trees or other leamen on the 
telephone troubleshooting problem. At first, we 
assumed that the independence assumption of the 
Bnyesian classifier was to blame; but recently, we 
have found that the normality assumption of numeric 
attributes was a major contributor to the poor 
perfonna”ce. For exantple, Figure 1 plots the 
frequency of given ranges of resistance for one 
attribute for examples of the class PDT (i.e., require 
retesting). Clearly, this is not nonally distributed. 

Discretizing numeric variables 
The more typical way of dealing with numeric 
variables in Bnyesian classifiers is to discretize the 
variables into a small number of petitions, and treat 
these partitions as nominal values. For example, one 
could “se for values as first-quartile, second-quartile, 
third-quartile. fourth-quartile. We start out 
experimentation with a” appronch in which we find 
the minimum and maximum value in the training sets 
and divide the data into P partitions of equal size. 
Figure 2 shows the Error (proportion of examples for 
which the classifier’s answer does not match a” 
acceptable answer) for training sets of size 200, 300. 
and 400 and for values of P equal to 2. 3,4, 5,6, 8, 
10. 12, and 15. Each point is the average of 20 trials 
of randomly choosing a training set of the specified 
size and using the remaining examples in the database 
as test exmples. Sevenl things are appwent from 
Figure 2. First. the choice of P has a major effect on 
the error rate. If too small a value is chosen, 
important distinctions are missed, and if too large a 
value is chose”, the data is so overly pnrtitioned that 
the probability estimates become ““reliable, Second, 
the best value for P depends upon the size of the 
training set. 
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There are seven1 problems with the straightforward 
approach to partitioning data used above. First. it’s 
not clear how to choose the best value for P (although 
cross-validation on the training set is likely to find a 
good value). Second, it’s not clear that the same 
value for P should be used for every attribute. This 
pxticulat problem has 21 attributes and it might be. 
best to divide some into 2 groups and others 10. 
Third, the approach doesn’t look for critical values of 
the variable. but just divides the vwiable into evenly 
spaced partitions. For extnnple, if one were dividing 
the variable graphed in Figure 1 into three regions, 
the ranges [O-1991. [200-33991 and [34OO-36001 
might be preferred to [O-1199], [1120-23991 
u”d[2400-36001. I” spite of its problems. this simple 
uppromh to discretion is much better than assuming 
“onnnlity. The error rate assuming normality with 
400 examples exceeds 40%. Furthermore, some 
valnes of P result in a more accurate classifier than a 
manually constructed tube-bnsed expert system and a 
classifier that is not less accurate than other 
approaches we have tried, such as decision trees 
(Quitdan, 1986) and rule learners (Pazzwnl & Kibler. 
1992). 

Searching for boundaries 
The problem of finding a good set of boundary points 
to discretize values for numeric attributes can be 
viewed ns a search problem. In particular. one 
approach would be to generate possible boundary 
points and estimate the error (or misclassification 
cost) of the Bayesinn classifier with these boundary 
points using leave-one-out cross-validation 
(LOOCV). Unfottunately. generating and testing all 
such boundwy points is imp&tical. In the worst 
case. there are at most 0(2 ) possible boundary 
points, where A is the number of numeric attributes 
and N is the number of examples (which is a” upper 
bound on the number of values of each attribute), 
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Figure 2. Error rate as a function of the “umber of 
partitions for training sets of size 200.300 and 400 
on the telephone troubleshooting problem. 

since each value of each attribute of each example is 
a potential boundary point. For the Bayesian classifier 
finding the optimal boundary points for each attribute 
individually need not result in a” overall optimal set 
of boundary points. One approach. that we evaluate 
in the next section is to avoid the search problem and 
“se a statistical or heuristic approach for linding 
boundary points. In this section, we propose a search 
procedure to End a “good” set of boundary points. 
The search procedure starts with a” initial seed set of 
boundary points (e.g., by discretizing each attribute 
into 5 partitions) and has two operators that adjust 
boundary points: 

I. Merge two contiguous intervals. 
2. Split a” interval into two intervals by 

considering introducing a new boundary point 
that is midway between every pair of 
contiguous attribute values within that interval. 

The adjust process uses a” iterative improvement 
search strategy as follows: 

Estimate the error (or misclassification cost) of 
each adjustment using LOOCV of the cUtTent 
set of boundary points, and reorder the 
examples such that those that are misclassified 
occur before those that are correctly classified. 
Reorder the attributes randomly 
For each attribute in the set of attributes 
A. Apply all operators in all possible ways to 

the current boundary points of the 
attribute. 

B. Estimate the error (or misclassification 
cost) of each adjustment using LOOCV 

C. If the error of anv adinstment is less than 
the error of the current boundary points. 
the” make that adjustment with the lowest 
error 

4. If no boandnry point was adjusted in Step 3 
The” retwn the current boundary points 
Else Go to step I 

There are several efficiency issues that xe needed to 
make this algorithm practical for “se on large 
databases. First, we may mnke one change to each 
attribute in Step 3. rather than making the single 
change to a single attribute that results in the lowest 
overall all error. This reduces the number of times 
that the loop needs to be executed. The attributes are 
reordered randomly before the loop is executed SO 
that the order of attributes does not have a major 
effect on the search process. Second, leave-one-out 
cross vahdatio” is used to estimate error because it 
may be efficiently implemented for Bayesian 
classifiers. A classifier can be built on the entire 
training set and when leaving a” example out. the 
contribution of that example to the probability 
estimates is subtracted out before classifying the 
example. A further optimization greatly speeds up 
the leave-one-out cross validation. The examples are 
ordered in Step 2 such that the examples misclassified 
by the classifier using the current boundary points are 
tested first. When calculating the error of a classbier 
with a new boundary point, we stop the leave-one-out 
testing as soon as it is certain that it will have at least 
as many errors as the carrent boundary points. On 
this problem, we have found that this reduces the 
number of examples classified during error estimation 
by approximately 70%. 

The iterative improvement algorithm is sensitive to 
the initial seed chosen to start the search. I” Figure 3, 
we report on an experiment in which we start by 
discretizing the numeric attributes into 5 partitions, 
and the” adjust these partitions by adding or deleting 
boundary points. The results displayed are the 
average error of 20 trials using 200, 300 and 400 
training examples, as well as the standard error 
around the mea” value. In all cases, lhe error is 
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Figure 3. Error rate as a function of the number of 
training examples with and without using boundary 
point adjustment when starting with discretizing each 
numeric attribute into 5 intervals. 

computed on a test set consisting of all examples not 
used as training exunples. The results show that 
adjusting the boundary points significantly reduces 
the error as measured by a paired two-tailed t-test at 
least at the .05 level adjusted for the fact that we are 
making 3 comparisons. We will use this same 
experimental methodology in all of our later 
experiments. 

Expert defined thresholds 
An alternative way of discretizing numeric data is to 
allow a” expert to select the boundary points. Since 
NYNEX has built a” expert system to perform this 
task we could use the threshold values for each 
attribute in the rules as boundary points. For 
example, the tules might say that if the voltage 
between ring and ground is 0, one sort of repair is 
needed, while if the voltage is between 0 and 3. 
another repair is needed, and if the voltage is above 3, 
a third repair is needed. I” this case 0 and 3 would 
serve as boundaty points. 

Figure. 4 compares using the expert boundary points 
directly in the Bayesian classifier and using the expert 
boundary points after adjusting. We see that the 
expert boundary points perform well. especially when 
there are a large number of training example: but the 
adjustment process results in a significant 
improvement at each level of the “umber of training 
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Figure 4. Error rate as a function of the number Of 
training examples with and without using boundary 
point adjustment when starting with boundary points 
derived from a” expert system. 

examples. In fact. adjusting the expert boundary 
points results in the lowest classification error rate on 
this problem that we have observed with any learning 
method. The boundary points after adjustment are 
available for inspection and a” expert examining 
these boundary points could gain useful information 
from the boundaty points. 

An information-based approach 
Fayyad & lrani (1993) have developed a” approach 
for finding a good set of boundary points for 
discretizing a numeric attributes to be used as a test in 
a decision tree. The approach is based on information 
theory and uses an MDL stopping criteria to 
determining when to stop subdividing intervals. 
Figure 5 compares using this method of 
discretizatio” to using this method to create the 
initial set of boundary points for adjusting. This 
method also works well, but adjustment results in a 
slight but statistically significant improvements at 
each level of training examples. 
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Figure 5. Error rate as a function of the number of 
training examples with and without using boundary 
point adjustment when sting with boundary points 
derived from a” information-based method (Fayyad 
& lrani, 1993). 

Conclusions 
We have investigated a” iterative improvement 
approach to discretizing a set of numeric attributes for 
use in a Bayesian classifier. The successful 
application of the Bayesian classifier depended 
critically on finding a good method for discretizing 
numeric variables. Although we have developed Ihe 
method in the context of Bayesian classifiers, it might 
be used in other leaners that usually discretize of 
numeric data such as Bayesian networks (e.g., Cooper 
& Herskovits, 1992). The approach proposed here 
makes adjusnnents to a user defined or automatically 
created set of initial intervals in a” attempt to improve 
upon the current misclassificalion error (or 
misclassification cost). Although there is no 
guarantee of tinding a” optimal set of intervals, in 
practice it has resulted in improvement over other 
approaches. The process is relatively efficient. In our 
experiments it required no more than 5 minutes of 
CPU (on a Spare 20) 10 adjust a give” set of boundary 
points. Furthermore, the approach may be interrupted 
at anytime to produce its current best set of boundary 
points. I” addition to Ihe NYNEX troubleshooting 
problem, we have tested this algorithm on several 
databases from Ihe UC1 archive of databases (e.g., 
glass and breast-cancer diagnosis) and found similar 
decreases in error rates compared lo other methods. 
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