
Proceedings on Privacy Enhancing Technologies ; 2016 (4):454–469

Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Koppen, Per Larsen,
Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi

Selfrando: Securing the Tor Browser against
De-anonymization Exploits
Abstract: Tor is a well-known anonymous communica-
tion system used by millions of users, including jour-
nalists and civil rights activists all over the world. The
Tor Browser gives non-technical users an easy way to
access the Tor Network. However, many government or-
ganizations are actively trying to compromise Tor not
only in regions with repressive regimes but also in the
free world, as the recent FBI incidents clearly demon-
strate. Exploiting software vulnerabilities in general,
and browser vulnerabilities in particular, constitutes a
clear and present threat to the Tor software. The Tor
Browser shares a large part of its attack surface with the
Firefox browser. Therefore, Firefox vulnerabilities (even
patched ones) are highly valuable to attackers trying to
monitor users of the Tor Browser.
In this paper, we present selfrando—an enhanced and
practical load-time randomization technique for the Tor
Browser that defends against exploits, such as the one
FBI allegedly used against Tor users. Our solution sig-
nificantly improves security over standard address space
layout randomization (ASLR) techniques currently used
by Firefox and other mainstream browsers. Moreover,
we collaborated closely with the Tor Project to ensure
that selfrando is fully compatible with AddressSanitizer
(ASan), a compiler feature to detect memory corrup-
tion. ASan is used in a hardened version of Tor Browser
for test purposes. The Tor Project decided to include
our solution in the hardened releases of the Tor Browser,
which is currently undergoing field testing.

Keywords: De-anonymization exploits, code-
randomization, privacy-oriented software, Tor Browser.

DOI 10.1515/popets-2016-0050
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

Mauro Conti: Università degli Studi di Padova,
E-mail: conti@math.unipd.it
Stephen Crane: Immunant, Inc., E-mail: sjc@immunant.com
Tommaso Frassetto: CASED/Technische Universität Darm-
stadt, Germany, E-mail: tommaso.frassetto@trust.cased.de
Andrei Homescu: Immunant, Inc.,
E-mail: ah@immunant.com
Georg Koppen: The Tor Project, E-mail: gk@torproject.org
Per Larsen: Immunant, Inc., E-mail: perl@immunant.com

1 Introduction
The Tor Project provides a suite of free software and
a worldwide network designed to facilitate anonymous
information exchange and to prevent surveillance and
fingerprinting of these interactions. The Tor network
is open to anyone and widely used by civil rights ac-
tivists, whistleblowers, journalists, citizens of oppressive
regimes, etc. Many sensitive websites, including the late
Silk Road black market, are only accessible over Tor.
Consequently, the Tor Network is continually facing de-
anonymization attacks by law enforcement, intelligence
agencies, and foreign nation states. A de-anonymization
attack aims to disclose information, such as the identity
or the location, of an anonymous user. While many de-
anonymization attacks rely on weaknesses in the net-
work protocol, they often require that adversaries con-
trol a large number of Tor nodes [26] or only work in a
lab environment [39].

An alternative and practical way to de-anonymize
Tor users is to exploit security vulnerabilities in the soft-
ware used to access the Tor network. The most common
way to access Tor is via the Tor Browser (TB) [73],
which includes a pre-configured Tor client. Since TB is
based on Mozilla’s Firefox browser, they share a large
part of their attack surfaces. In 2013, the Federal Bu-
reau of Investigation (FBI) exploited a known software
vulnerability in Firefox [71] to de-anonymize Tor users
that had not updated to the most recent version of
TB [27, 57, 74]. Due to the success of this operation,
exploit brokers [79] (and, presumably, governments and
criminals) are currently soliciting exploits for the TB.
In early 2016, it was confirmed that the FBI contin-
ues to monitor the Tor network, this time using a de-

Christopher Liebchen: CASED/Technische
Universität Darmstadt, Germany,
E-mail: christopher.liebchen@trust.cased.de
Mike Perry: The Tor Project,
E-mail: mikeperry@torproject.org
Ahmad-Reza Sadeghi: CASED/Technische Universität
Darmstadt, Germany, E-mail: ahmad.sadeghi@trust.cased.de



Selfrando: Securing the Tor Browser against De-anonymization Exploits 455

anonymization attack devised by Carnegie Mellon Uni-
versity researchers [19].

The Open Technology Fund commissioned a study
on current and future hardening efforts to reduce the
attack surface of the TB [58]. One of the recommenda-
tions was to use compiler techniques to detect mem-
ory corruption (buffer overflow, use-after-free, unini-
tialized variables, etc.) such as the AddressSanitizer
(ASan) feature [61]. Another key recommendation was
to use address space layout randomization (ASLR) to
prevent exploitation of memory corruption vulnerabili-
ties. While ASan imposes a high runtime overhead [61],
ASLR is very efficient. However, ASLR was recom-
mended because it is widely supported by compilers
and operating systems, not for its security properties. In
fact, the shortcomings of ASLR are well documented in
the academic literature [8, 16, 33, 62, 64, 68]. ASLR can
be made significantly stronger by randomizing not just
the base address of modules but also the code inside each
module. Address space layout permutation (ASLP) [44],
for instance, randomizes the location of each function
individually, thwarting many of the techniques used to
bypass ASLR. Until now, however, the ASLR improve-
ments suggested in the literature have suffered from
one or more drawbacks that have prevented their use
in practice. Some techniques rely on binary rewriting,
which does not scale to complex programs such as web
browsers [22, 38]; others randomize the code using a cus-
tomized compiler [35], or require each user to download
their own unique binary [42].

Goals and Contributions The goal of this
paper is to demonstrate a load-time randomization
technique—named selfrando—that improves security
over ASLR while preserving the features that enabled
ASLR’s widespread adoption. While technically chal-
lenging, our use of load-time function layout permuta-
tion ensures that the attack surface changes from one
run to another. Load-time randomization also ensures
compatibility with code signing and distribution mech-
anisms that use caching to efficiently serve millions of
users. Finally, we worked in close collaboration with the
TB developers to ensure that selfrando was fully com-
patible with ASan so that users can use both techniques
simultaneously. ASan is used in a hardened version of
TB to detect and diagnose memory corruption errors.

Summing up, our main contributions are:
– Practical Randomization Framework Unlike

other solutions that have only been tested on bench-
marks, selfrando can be applied to the TB with-
out any changes to the source code. To the best of
our knowledge, selfrando is the first approach that

avoids risky binary rewriting or the need to use a
custom compiler, and instead works with existing
build tools. Moreover, it is fully compatible with
ASan, which required additional implementation ef-
fort since the randomization interferes with ASan.

– Increased Entropy and Leakage Resilience
selfrando reduces the impact of information leak-
age vulnerabilities and increases entropy relative
to ASLR, making selfrando more effective against
guessing attacks. Our use of load-time randomiza-
tion mitigates threats from attackers observing bi-
naries during download or after the executable files
have been stored on disk.

– Hardening the Tor Browser We demonstrate
the practicality of selfrando by applying it to the en-
tire TB without requiring any code changes. Our de-
tailed and careful evaluation shows that the startup
and performance overheads of selfrando are negligi-
ble.

2 Background

2.1 Exploiting Memory Corruption

Unlike modern programming languages, C and C++ rely
on manual memory management, trading reliability for
flexibility and performance. Hence, memory manage-
ment errors often create vulnerabilities that can be ex-
ploited to hijack control flow and perform other mali-
cious operations that were never intended by the pro-
gram authors.

Traditionally, attackers used a buffer overflow to di-
rectly inject malicious code into a program and exe-
cute it [6]. However, the introduction of the W⊕X pol-
icy that requires memory pages to either be writable
or executable, but not both, made most code-injection
attacks [49] obsolete. As W⊕X became commonplace,
attackers changed their tactics from code injection to
code reuse. These attacks reuse existing, legitimate code
for malicious purposes and have therefore proven far
harder to stop than code injection. Return-into-libc
(RILC) attacks, for example, arrange the stack con-
tents so the attacker can call dangerous functions inside
the C library with attacker-controlled arguments [52].
Researchers later demonstrated a more general class of
code reuse attacks called return-oriented programming
(ROP) [63]. The insight behind ROP is that attackers
can build a malicious virtual machine out of short in-
struction sequences—called gadgets in ROP parlance—



Selfrando: Securing the Tor Browser against De-anonymization Exploits 456

ending with a return (or some other indirect branch).
These gadgets are all located inside application code, so
the attacker has no need to inject them into the pro-
gram. Over the last decade researchers have discovered
many variants of code-reuse attacks [10, 11, 15, 59, 76],
most of which are not stopped by ASLR, W⊕X, or other
widely deployed exploit mitigations.

2.2 Preventing Code-Reuse Exploits

To successfully mount a code-reuse attack, several re-
quirements must be met. First, the application must
contain a memory corruption vulnerability that allows
control flow to be hijacked. Techniques such as control-
flow integrity and stack canaries make control-flow hi-
jacking harder but do not prevent it outright [14, 29,
36, 48]. Another key requirement is knowledge of the
absolute addresses of the gadgets to reuse. In principle,
ASLR [54] prevents adversaries from knowing the ab-
solute locations of ROP gadgets. However, since ASLR
only randomizes the base address of a library, adver-
saries still know the relative positions of all functions
inside a library. Using this knowledge together with a
leaked code pointer, attackers can compute the absolute
addresses of all functions in the same library. Academics
have documented numerous ways to leak code or point-
ers to code [24, 60, 62, 66]. Permuting the functions in-
side a library removes attackers’ knowledge of the rela-
tive function layout inside each library, and additionally
improves entropy by allowing an exponentially higher
number of code layouts in comparison to ASLR [44].

Numerous other fine-grained diversity techniques
have been suggested in the literature. In this paper, we
focus on function permutation since it is practical and
efficient, as shown by existing diversity surveys [17, 46].

Unfortunately, previous fine-grained diversity ap-
proaches have been unable to replace ASLR because
they have one or more of the following drawbacks:
1. they introduce unacceptable performance over-

heads [69],
2. they rely on unsafe binary rewriting techniques that

do not scale to complex, real-world applications,
3. they randomize code at compile time which is in-

compatible with current distribution mechanisms
that are optimized to deliver a single binary.

In contrast, the technique we present in this paper, sel-
frando, avoids all of these drawbacks and scales to real-
world applications including Firefox and TB.

2.3 Trust in Privacy-preserving Software

As we have previously mentioned, any tactic that al-
lows de-anonymization of Tor network users is likely to
be attempted by law enforcement, intelligence agencies,
and other resourceful adversaries. The ability to sur-
reptitiously insert backdoors into the TB would be a
particularly powerful attack. In order to reduce the like-
lihood that backdooring attempts would go unnoticed,
the Tor developers ensure that builds are reproducible.
Even though the TB source code can be downloaded by
anyone, differences in build tools, libraries, file system
layout and even system time make it hard to simply
build the TB from sources and compare it to the official
binaries to ensure the absence of backdoors. Therefore,
the TB is built using Gitian, a special tool which pro-
vides a reproducible build environment [55, 72]. This al-
lows third parties to independently compile and verify
the binaries distributed by the Tor Project and detect
any signs of external compromise.

Gitian consists of a virtual machine and a number of
build scripts to automate the process. The virtual ma-
chine insulates the build from the outside environment.
At the time selfrando was developed, the TB builds for
Linux used a virtual machine based on Ubuntu 10.04.
Hence, many build tools were unavailable or outdated.
To cope with this shortcoming, we either compiled a re-
cent version of the tool in the virtual machine itself or we
adapted the build process to support the older version.
The Tor developers recently (May 2016) switched to a
virtual machine based on Debian 7. During the switch
no modifications were necessary to our code.

3 Selfrando

3.1 Design Objectives

Our main objective is to substantially raise the costs for
attackers to exploit memory-corruption vulnerabilities.
For practicality reasons, we choose to support complex
C/C++ programs (e.g., a browser) without modifying
their source code. Further, we retain full compatibil-
ity with current build systems, i.e., we should avoid
any modification to compilers, linkers, and other oper-
ating system components. To be applicable to privacy-
preserving open-source tools, we must not rely on any
third-party proprietary software. Finally, our solution
should not substantially increase the size of the program
in memory or on disk.



Selfrando: Securing the Tor Browser against De-anonymization Exploits 457

3.2 Threat Model

We make standard assumptions from underlying real-
world adversary settings: we assume that a remote at-
tacker triggers a memory corruption vulnerability to hi-
jack control flow and achieve remote code execution.
Due to the widespread deployment of stack protec-
tions (e.g., StackGuard [18] and SafeStack [70]) and the
fact that most exploits against browsers rely on use-
after-free errors [75], we assume that the adversary ex-
ploits a heap-based memory corruption vulnerability.
This means that the adversary can use code pointers
stored on the heap to disclose the location of code be-
fore mounting a code-reuse attack. Further, we assume
that a W⊕X policy is in place to prevent code injection,
which is true for all modern systems. In this work we
do not consider attacks that target the browser’s JIT
engine.

Note that our threat model does not cover some the-
oretical attacks such as JIT-ROP [66] and COOP [59]
that have only been demonstrated in an academic set-
ting. As mentioned above, our main objective is high
practicality while significantly improving security pro-
vided by ASLR against memory corruption attacks; de-
fenses that can stop JIT-ROP and COOP are less ef-
ficient and rely on special hardware support, a custom
compiler, and a patched OS kernel [12, 20, 21].

3.3 Selfrando Design

Existing exploit mitigations such as W⊕X and ASLR
already make de-anonymization exploits costly to de-
velop. Thus, exploits which bypass these mitigations of-
ten target high-profile applications with many users. Al-
though the Tor user base isn’t large, the TB shares a
large amount of code with Firefox which has hundreds of
millions of users and contains more than 20 million lines
of code. The similarities between the TB and Firefox
make it comparatively easy to re-purpose mainstream
Firefox exploits to de-anonymize Tor users. We can use
our improved randomization mechanism to protect the
TB and at the same time strongly raise the bar for the
adversary to port exploits from Firefox to TB.

The easiest way to perform fine-grained code ran-
domization is by customizing the compiler to take a seed
value and generate a randomized binary [32, 42]. Un-
fortunately, compiling and distributing a unique binary
for each is impractical for introducing diversity among a
population of programs [30, 78]. With more implementa-
tion effort, we can delay randomization until load-time,

C/C++

compiler

.o .o

object 
files

source
files

linker

executable

loader

process

C/C++

compiler

.o .o

object 
files

source
files

executable

loader

process

1 linker 
wrapper

linker

RandoLib
2

randomization

(a) without selfrando (b) with selfrando

Fig. 1. Building and running applications without (a) and with
selfrando (b) enabled.

which has several benefits. Most importantly, software
vendors only need to compile and test a single binary.
A single binary also means that users can continue to
use hashes to verify the authenticity of the downloaded
binary. Finally, modern content delivery networks rely
extensively on caching binaries on servers; this optimiza-
tion is no longer possible with unique binaries.

In the context of privacy-preserving software such as
TB, compile-time randomization raises additional chal-
lenges. Randomized builds would complicate the deter-
ministic build process,1 which is important to increase
trust in the distributed binary (see Section 2.3). More-
over, compile-time randomization would (a) increase the
feasibility of a de-anonymization attack due to individ-
ual, observable characteristics of a particular build, and
(b) allow an attacker to build knowledge of the mem-

1 A randomized build can be implemented in a deterministic
environment by passing a random seed as an input to the de-
terministic process. The builds would then be distributed along
with their seed. A user could then check the integrity of her build
by running the deterministic process again with the same seed.
However, that check would not prove the integrity of builds with
other seeds.



Selfrando: Securing the Tor Browser against De-anonymization Exploits 458

ory layout across application restarts, since the layout
would be fixed.

For these reasons, we decided to develop a frame-
work which makes the program binary randomize itself
at load time. We chose function permutation (ASLP) as
the randomization granularity, since it dramatically in-
creases2 the entropy of the code layout while imposing
the same low overheads as ASLR [44]. Since discover-
ing function boundaries at load-time by analyzing the
program binary is unreliable and does not scale to large
programs, we pre-compute these boundaries statically
and store the necessary information in each binary. We
call this Translation and Protection (TRaP) informa-
tion.

Rather than modifying the compiler or linker, we
developed a small tool which wraps the system linker,
extracts all function boundaries from the object files
used to build the binary, then appends the necessary
TRaP information to the binary itself. Our linker wrap-
per works with the standard compiler toolchains on
Linux and Windows and only requires a few changes
to the build scripts to use with the TB.

Figure 1a represents the usual workflow from the
C/C++ source code to a running program. Figure 1b
represents the modified workflow with selfrando. A
linker wrapper intercepts calls to the linker and calls sel-
frando to gather information on the executable file 1 .
Then, it embeds TRaP information and a load-time ran-
domization library, RandoLib, into the binary file 2 .
When the loader loads the application, it will invoke
RandoLib instead of the entry point of the application.
RandoLib will randomize the order of the functions in
memory and then transfer control to the original pro-
gram entry point.

4 Implementation
One of our main goals is to demonstrate the practicality
of selfrando by integrating it into the TB. To test self-
rando before it is released to Tor users at large, the Tor
project decided to first include our defense in a series
of experimental, hardened builds for Linux.3 The hard-
ened builds of Tor include additional features such as
AddressSanitizer (ASan), a compiler feature which can

2 We compare the entropy of function permutation and ASLR
in Section 5.
3 Selfrando is also compatible with Android and closed-source
platforms such as Microsoft Windows.

detect memory corruption. ASan and selfrando are com-
plementary in nature. The former detects bugs that can
create security issues, however, ASan is not a defense
mechanism like selfrando and should not be relied upon
to stop exploits [51].

To build a program with selfrando, the build scripts
must be updated to use our linker wrapper rather than
directly invoking the system linker. The wrapper ac-
cepts the same arguments as the system linker, so mod-
ifying the build scripts is a straightforward task for a
skilled software developer. This enables us to intercept
any invocation of the linker and modify its arguments.
In the following we will explain the major implementa-
tion aspects with the help of Figure 2. Notably, we will
explain in detail how selfrando (1) extracts the metadata
needed to create self-randomizing binaries, (2) embeds
the extracted information and the load-time component
into the generated binary, and (3) permutes all functions
during load time without breaking the application.

Finally, we describe two practical challenges that
we solved to make selfrando compatible with the hard-
ened build of TB. Specifically, we needed selfrando to
(4) support stack unwinding which is needed for stack
traces and exception handling and (5) be compatible
with ASan.

4.1 Extracting TRaP Information

When a module is loaded, selfrando permutes the order
of all its functions. To do so, selfrando requires accurate
information about function boundaries. If this informa-
tion is not accurate, shuffling the function layout may
inadvertently introduce errors that prevent correct exe-
cution of the application. After a function is moved, all
references and pointers to this function, e.g., the target
address of a call, become invalid because they still ref-
erence the old address. Hence, selfrando needs to update
all references to the moved function, and therefore re-
quires, for each function, a complete list of all locations
that reference that function.

Such information is present in the intermediate ob-
ject files 1 . Since this metadata is usually not required
during execution, the linker strips it from the final bi-
nary. Our linker wrapper therefore intercepts the linking
process to extract function boundaries and references
and embeds this information for use at load time.

However, object files do not explicitly mark all func-
tion references. Specifically, we found that in some cases
the compiler optimizes the code by inserting direct
jumps between two functions. Such references are not



Selfrando: Securing the Tor Browser against De-anonymization Exploits 459

compiler function 1

TRaP info

ELF headers

function 2
function ..
function n

executable

RandoLib
RL starter

data

{
RandoLib

function 1

ELF headers

function 2
function ..

function n

process

data

RandoLib

TRaP info

RL starter

3

5

4

RL starter

source
files

C/C++

object
files

C/C++

.o
metadata

.o
metadata

1

2 linker 
wrapper

linker

loader

Fig. 2. Workflow of selfrando.

marked with an explicit relocation because they are al-
ready resolved by the compiler. Fortunately, we can dis-
able this behavior with a compiler option causing the
compiler to place each function in a separate section.
Since the compiler marks all references between sec-
tions, we can then see all function references. While en-
abling this option slightly increases build-time (0.07%),
it also enables a linker optimization which increases lo-
cality [31].

Pre-compiled language runtime object files are an-
other obstacle. One example is crtbegin.o for GCC
which contains functions to initialize the runtime en-
vironment for applications that were programmed in
C. In our current implementation, we treat such object
files as one single block because they contain only a few
functions. This has a negligible impact on the overall
randomization entropy. Nevertheless, we are currently
investigating how we can generate selfrando-compatible
versions of the pre-compiled object files.

After selfrando extracts the necessary metadata
from each generated object, it adds an additional linker
argument that instructs the linker to generate a map
file, which is a text file that contains the memory lay-
out of the final binary 2 . Using the metadata and the
map file, selfrando can compute the final location of each
function in the executable file and all references to these
functions.

Next, we explain how we embed the TRaP informa-
tion in the binary to make it available to the run-time
component—RandoLib.

4.2 Embedding TRaP information

We include the TRaP info, which is used by RandoLib,
in the executable to make selfrando self-contained. This
avoids having to manage additional files, which could
add logistical burden.

However, from a technical point of view, embed-
ding the data in a space-efficient and binary format-
compatible way without modifying the linker is chal-
lenging. The main reasons are that (1) some of the
metadata is only available after linking is complete, and
(2) we cannot pre-allocate space for the data since the
exact amount of space needed is unknown until linking
is done. In particular, the start address of each function
in the linked binary is determined by the order and final
addresses of the object files in the binary, and therefore
unknown until all objects are linked.

To add additional data to the final binary, we have
to resort to a trick that involves changing the linker
input so that it adds an empty segment header in the
beginning of the binary. Note that a linked ELF bi-
nary is divided into segments. The linker creates a seg-
ment header which contains segment metadata, e.g., size
and memory permissions, for each segment. The loader
uses this metadata to load each segment of the binary
into memory. Due to the structure of the binary for-
mat, adding an empty segment header in the beginning
of the binary enables selfrando to append an arbitrary
amount of data. When the linker is finished, we append
the TRaP info and RandoLib to the end of the binary
and set the values of the empty segment header accord-



Selfrando: Securing the Tor Browser against De-anonymization Exploits 460

ingly 3 . Finally, we change the start address of the
binary—its entry point—to RandoLib. Hence, after the
loader loads the binary into memory, it will transfer
control to RandoLib, which then performs the function
permutation.

4.3 Load-time Function Permutation

RandoLib performs function permutation using the em-
bedded TRaP info, and consists of two parts: a small
helper stub and the main randomization module. The
purpose of the helper stub (RL Starter in Figure 2) is
to make all selfrando data inaccessible after RandoLib
finishes. The operating system loader 4 calls this stub,
invoking RandoLib as the first step of program execu-
tion.

The function permutation algorithm proceeds in
several steps. First, RandoLib generates a random order
for the functions using the Fisher-Yates shuffling algo-
rithm. Second, RandoLib uses the embedded metadata
to fix all references that became invalid during the ran-
domization. Finally, after RandoLib returns, the helper
stub makes selfrando’s data inaccessible 5 , and jumps
to the original entry point of the binary.

While this approach might seem straightforward, we
faced several technical challenges. For example, we have
to consider that C++ code and certain assembly instruc-
tions require a certain alignment for every function. The
Itanium C++ method pointer specification assumes that
all functions are at least 2-byte aligned [43]. Further, we
found that some assembly instructions are sensitive to
alignment, e.g., movdqa which is commonly used in the
implementation of cryptographic functions. We account
for the alignment of C++ functions by increasing the
size of the code segment by one byte per function. This
allows RandoLib to maintain the least significant bit
alignment of functions during copying. During our eval-
uation, we found that this alignment increases the file
size on average by 0.3%.

Our implementation does not fully support
alignment-sensitive assembly instructions, as they are
not used by the TB. We can currently run programs
that use such instructions by preserving the four least
significant bits of function addresses during randomiza-
tion. Moreover, we are working on a static analysis tool
that can identify functions that contain these instruc-
tions, and mark them in the TRaP info so RandoLib
can take their alignment constrains into account.

variables

NULL
return addr.

variables

saved ebp
return addr.
arguments

ebp

variables

saved ebp
return addr.
arguments

Fig. 3. Stack layout with the frame pointers.

4.4 Stack Unwinding

During program execution, the program stack is divided
into stack frames. Each stack frame corresponds to a
function call and consists of local variables, the return
address, and arguments which were passed to the callee.
Stack unwinding is the process of iterating through all
active stack frames, starting from the most recent. It
is mainly used for stack traces and exception handling,
as both require access to previous stack frames. Excep-
tion handling uses stack unwinding to find the excep-
tion handler for a given exception after the program
has thrown an instance of that exception.

Traditionally, stack unwinding is supported by
chaining stack frames as a singly-linked list, where each
stack frame includes a pointer to the previous stack
frame. The head of the linked list is stored in a dedi-
cated register called the base pointer (BP) (ebp on x86).
When a new stack frame is added, the called function
saves the BP register of the caller on the stack, then
overwrites the BP register to point to the current stack
frame, as shown in Figure 3.

Modern compilers omit the frame pointer for opti-
mized code to reduce memory usage on the stack and
free another register for general purpose computations.
To still support stack unwinding, compilers generate ad-
ditional metadata which can be used to identify individ-



Selfrando: Securing the Tor Browser against De-anonymization Exploits 461

ual stack frames. Function permutation invalidates func-
tion references inside the stack unwinding metadata, so
RandoLib updates them.

4.5 AddressSanitizer

The TB developers use AddressSanitizer (ASan) [61] to
detect memory corruption bugs in their hardened re-
leases. To allow selfrando to be deployed on TB, self-
rando needs to work correctly with ASan.

In general, selfrando does not interfere with the nor-
mal operation of ASan. When ASan detects a memory
corruption, it generates a stack trace, which is supported
by selfrando (cf. Section 4.4). To help troubleshoot mem-
ory corruption bugs, ASan annotates the stack trace
with symbolic information. Specifically, it uses a sym-
bolizer to obtain the function name and the source code
location of every address in the stack trace. After self-
rando randomizes the order of functions, the symbolizer
can no longer correctly map the stack addresses to func-
tion names. We restore the symbolizer’s ability to anno-
tate stack traces by emitting a map file that stores the
original and actual address of each randomized function.
We modify the symbolizer of ASan to use the emitted
mapping to map the addresses of the stack trace to the
original address.

While storing the randomization map on disk is
a potential security risk, exfiltrating this map would
require that the attacker can read the randomization
map file. The ability to read arbitrary files gives the at-
tacker other, more significant advantages. For example,
an attacker could use this advantage to disclose the full
memory layout of the program by reading the special
/proc/self/mem file.

5 Experimental Evaluation
We thoroughly evaluated selfrando from a security, per-
formance and compatibility standpoint.

5.1 Security Analysis

We first evaluate the security of our solution and ASLR
in terms of randomization entropy. This shows how well
each defense resists brute force attacks. We then use a
real-world exploit to compare our solution to ASLR in
cases where attackers exploit information leakage which
can be more effective than brute force guessing.

Randomization Entropy
For any randomization scheme the amount of entropy
provided is critical, because a low randomization en-
tropy enables an attacker to guess the randomization
secret with high probability [64]. We compare selfrando
to ASLR—the standard code randomization technique
that is available on all modern systems.

We determined the real-world entropy of ASLR by
running a simple position-independent program multi-
ple times and analyzing the addresses, on a Debian 8.4
machine using GCC 6.1.0 and Clang 3.5.0. ASLR pro-
vides up to 9 bits of entropy on 32 bit systems and
up to 29 bits of entropy on 64 bit systems. While the
ASLR offset on 32 bit systems is guessable in a rea-
sonable amount of time, such attacks become infeasi-
ble on 64 bit systems because the address space is that
much larger. However, an attacker can bypass ASLR by
leaking the offset that the code is loaded at in mem-
ory through a pointer into application memory. Once
this offset is known the attacker can infer any address
within the application, because it is used to shift the
address of the whole application.

Selfrando, on the other hand, applies more fine-
grained function permutation. This means the random-
ization entropy does not depend on the size of the ad-
dress space, as it is the case for ASLR, but on the num-
ber of functions in the randomized binary. The total
entropy generated by selfrando on a library containing
m functions depends on the factorial of m:

Et = log2(m!)

On the other hand, the attacker does not usually
need to disclose the whole layout; the addresses of a
few functions are enough. Assuming the attacker al-
ready bypassed ASLR, the attacker needs to disclose
the least significant bits of each pointer. The entropy of
a pointer to a randomized function depends on the size
of the executable section s:

Ep = log2(s) − 1

We need to subtract 1 because the least significant
bit of the addresses is preserved during the random-
ization. Assuming that the attacker needs gadgets in n

different functions, the total number of bits the attacker
needs to disclose is the minimum of Et and n times Ep:

E = min(Et, n × Ep)

In practice, Et is much greater than Ep due to the
factorial, so we can assume E = n × Ep.



Selfrando: Securing the Tor Browser against De-anonymization Exploits 462

Technique Entropy

ASLR (32 bit) 9 bits
ASLR (64 bit) 29 bits
Selfrando (10 KB code) 13×n bits
Selfrando (163 KB code) 17×n bits
Selfrando (6.5 MB code) 22×n bits
Selfrando (92 MB code) 26×n bits

Table 1. Randomization entropy of ASLR and selfrando for dif-
ferent address space sizes and function counts. For selfrando, we
report the number of bits the attacker needs to guess for each
function address the attacker needs.

Using TB as our model organism, we use the number
of functions to calculate the minimum and maximum
entropy for a binary protected by selfrando. The small-
est library (libplds4.so) has 44 functions in 10 KB of
code, while the biggest (libxul.so) has 242 873 func-
tions in 92 MB. The median is 494 functions in 163 KB,
while the average is 16 814 functions in 6.5 MB. Table 1
shows that for each function address, the attacker needs
to guess between 13 and 26 bits. If we assume that the
attacker needs the address of at least three functions,
selfrando is significantly more effective than ASLR. For
the smallest library, the attacker needs to guess at least
39 bits, while for the biggest, the attacker needs at least
78 bits.

Additionally, selfrando provides higher leakage re-
silience compared to ASLR because the attacker no
longer knows the relative function layout inside each
binary.

Real-world Exploits against the Tor Browser
One of our main objectives is to enhance the resilience of
TB against code-reuse attacks. Previously conducted at-
tacks, e.g., by the FBI [57], fail because these attacks do
not consider selfrando (see Appendix A for an overview
of the exploit the FBI used). Therefore, we analyze the
attack surface of TB after selfrando was applied in a re-
alistic attack scenario. We base our analysis on four ob-
servations we made while studying real-world exploits.

First, nearly all modern attacks exploit heap-based
vulnerabilities, despite the existence of stack vulner-
abilities [50]. However, whether a vulnerability can
be exploited to launch a code-reuse attack depends
on different factors, like how reliably the vulnerabil-
ity can be triggered and the present mitigation tech-
niques. Today, most stack-based vulnerabilities are not
exploitable because they are mitigated by modern stack
defenses [18, 70].

Second, information disclosure attacks are often lim-
ited to leaking heap memory because they access mem-
ory relative to the address of the vulnerable memory
object. A buffer overread, for example, can be exploited
to disclose consecutive memory which might contain in-
teresting pointers, whereas a use-after-free vulnerability
can be exploited to disclose interesting pointers of the
freed object. In both cases the attacker is not able to
(repeatedly) disclose absolute, and therefore, arbitrary,
addresses. For these reasons we assume that in a prac-
tical scenario the attacker cannot leak information that
is not located on the heap, e.g., stack or code pages.
To overcome this limitation attackers use a technique,
called heap feng shui [67], to place an object that con-
tains valuable pointers near to the vulnerable object.

Third, most real-world attacks are based on ROP.
While other types of code-reuse attacks exist [15, 52, 59],
ROP remains the most versatile technique. To execute a
ROP payload, the attacker needs to either inject his pay-
load directly on the stack, or use a stack-pivot gadget to
overwrite the stack pointer with an address that points
to the ROP payload on the heap. As mentioned previ-
ously, the attacker usually has no access to the stack.
Hence, the first gadget in the ROP chain is normally a
stack-pivot.

Fourth, ROP is merely used to bypass W⊕X poli-
cies and enable code injection, i.e., a small ROP pay-
load is used to (1) mark the data memory containing
the shellcode as executable and (2) branch to the shell-
code. The shellcode will then perform the actual task of
de-anonymizing the user or installing surveillance soft-
ware. To mark a data page as executable, only a single
system call is needed. Hence, the attacker requires only
gadgets that load the arguments for the system call into
the registers, then issue a system call and return to the
shellcode.

Based on these four observations, we examined the
main TB library with selfrando enabled (libxul.so hav-
ing a size of 92MB) to find out whether an attacker is
able to disclose the address of a stack-pivot and a sys-
tem call gadget based on addresses that can be found
on the heap. We focus on stack-pivot and system call
gadgets because they are less common, and therefore,
harder to disclose compared to gadgets that only load a
value into a register. In total, we found ten stack-pivot
and 76 system call gadgets of which only 4 and 29 re-
spectively are available through virtual functions whose
addresses are exposed on the heap through indirection
tables called virtual tables.

We manually analyzed each function and concluded
that no pointer to these functions is ever written on



Selfrando: Securing the Tor Browser against De-anonymization Exploits 463

-2%
+0%
+2%
+4%
+6%
+8%
+10%
+12%
+14%

pe
rlb

en
ch
	

bz
ip
2	

gc
c	

m
cf
	

m
ilc
	

na
m
d	

go
bm

k	
de
al
II	

so
pl
ex
	

po
vr
ay

hm
m
er
	

sje
ng
	

lib
qu
an
tu
m
	

h2
64
re
f	

lb
m
	

om
ne
tp
p

as
ta
r	

sp
hi
nx
3	

xa
la
nc
bm

k
Ge

o	
M
ea
n

Clang GCC

Fig. 4. Run time overhead on the benchmarks in the SPEC
CPU2006 suite (full selfrando).

the heap. The reason is that these function pointers are
only accessed through an indirection layer, i.e., memory
objects on the heap contain a pointer to a virtual table
which is located in the code or data section of the ap-
plication and contains a number of pointers to virtual
functions. Since the attackers can only disclose the vir-
tual table pointer, but not the virtual table itself, as it is
not on the heap, they cannot disclose gadget addresses.
Note that, when only ASLR is applied, the address of
the virtual table is randomized with the same offset as
the ROP gadgets. Therefore, such an attack can bypass
ASLR but not selfrando.

We therefore conclude that selfrando can thwart
most real-world exploits. Attackers can only succeed in
rare cases where they can disclose the complete heap
and data section.

5.2 Performance Overhead

We performed multiple tests to measure selfrando’s run-
time overhead. Since selfrando works at load-time, we
also measured the additional startup time.

All tests were performed on a system with an Intel
Core i7-2600 CPU clocked at 3.40 GHz, with 12 GB of
RAM and a 7200 RPM hard disk. We used version 5.0.3
of the Tor Browser on Ubuntu 14.04.3.

5.2.1 Load-time Overhead

We measured the load time of TB by inserting a return
statement in the main function, after the dynamic li-
braries are loaded but before the program actually does
anything. We invoked the modified program and mea-
sured the load time using the standard tool time. As a
baseline, we used the source code of TB 5.0.3, unmodi-

-4%
-3%
-2%
-1%
+0%
+1%
+2%
+3%

pe
rlb

en
ch
	

bz
ip
2	

gc
c	

m
cf
	

m
ilc
	

na
m
d	

go
bm

k	
de
al
II	

so
pl
ex
	

po
vr
ay

hm
m
er
	

sje
ng
	

lib
qu
an
tu
m
	

h2
64
re
f	

lb
m
	

om
ne
tp
p

as
ta
r	

sp
hi
nx
3	

xa
la
nc
bm

k
Ge

o	
M
ea
n

Clang GCC

Fig. 5. Run time overhead on the benchmarks in the SPEC
CPU2006 suite (identity transformation).

fied except for the main function. For both versions, the
reported time is the average of 10 runs. We cleaned the
disk cache before each run, so the binary was loaded
from the disk every time.

The average load time for the normal version was
2.046 s, while the selfrando version took 2.400 s on aver-
age. The average overhead is 354 ms. We believe this is
an acceptable overhead considering the improved pro-
tection against de-anonymization attacks.

5.2.2 Run-time Overhead

To test the run-time overhead of selfrando, we ran the
SPEC CPU2006 benchmark suite as well as a number
of modern JavaScript benchmarks.

We executed all the C and C++ benchmarks in
SPEC CPU2006 with the two standard Linux compil-
ers (GCC and Clang) with selfrando enabled. Moreover,
we ran the benchmarks with a version of selfrando that
always chooses the original order for the randomiza-
tion (identity transformation). This version runs all the
load-time code but it does not actually modify the code
segment. It allows us to distinguish between load-time
overhead and run-time overhead. We ran each bench-
mark three times with the ref workload. The reported
figures are the median values.

Figure 4 shows the performance overhead on each
benchmark. The geometric mean of the positive over-
heads is 0.71% for GCC and 0.37% for Clang. The over-
head of each benchmark except for xalancbmk is be-
low 4%. We found xalancbmk to be an outlier, with
an overhead of about 14%. We investigated this issue
using the Linux performance analysis tool, perf, com-
paring the full selfrando and the identity transforma-
tion runs. We discovered a 69% increase in L1 instruc-
tion cache misses and a 521% increase in instruction



Selfrando: Securing the Tor Browser against De-anonymization Exploits 464

-5%

+0%

+5%

+10%

+15%
pe
rlb

en
ch
	

bz
ip
2	

gc
c	

m
cf
	

m
ilc
	

na
m
d	

go
bm

k	
de
al
II	

so
pl
ex
	

po
vr
ay

hm
m
er
	

sje
ng
	

lib
qu
an
tu
m
	

h2
64
re
f	

lb
m
	

om
ne
tp
p

as
ta
r	

sp
hi
nx
3	

xa
la
nc
bm

k
Ge

o	
M
ea
n

Clang

GCC

Fig. 6. Memory overhead of the benchmarks from the SPEC
CPU2006 suite (full selfrando).

TLB (Translation Lookaside Buffer) misses. We believe
that the xalancbmk benchmark is sensitive to the func-
tion layout and that some frequently executed functions
must be co-located to ensure optimal performance. We
didn’t observe a high sensitivity to the function layout
for any of the other benchmarks. A possible extension
to selfrando to cope with location-sensitive programs is
to automatically use performance profiling to identify
groups of functions that should be moved as a single
bundle similar to the work of Homescu et al. [41]. If
these bundles are small enough, this extension would
not significantly reduce the security of a large applica-
tion (xalancbmck contains 13478 functions). Figure 5
shows the run time overhead with the identity transfor-
mation.

In some cases, selfrando actually improves perfor-
mance. In particular, we observed that with the identity
transformation the performance of gobmk and povray
improves up to 2.5%. We suspect this is caused by the
compiler flag that places each function in its own sec-
tion, which enables further linker optimizations [31].
This flag is not enabled by default, but selfrando re-
quires it (see Section 4.1).

Figure 6 shows the overhead on the memory us-
age of each benchmark. To measure the memory usage,
we used the maximum resident set size reported by the
time utility. The geometric mean of the positive over-
heads is 0.18% for GCC and 0.20% for Clang. We also
measured the absolute overheads: the geometric mean
of the positive values is 299 kB for GCC and 295 kB for
Clang.

The memory overhead of all benchmarks except for
povray and hmmer is below 2%. These benchmarks have
higher relative overheads due to their small memory
footprints, about 5 MB for povray and about 9 MB
for hmmer. Their absolute overheads are about 600 kB
and 400 kB respectively.

3.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%
JetStream Massive Octane Geo	Mean

Fig. 7. JavaScript performance overhead of selfrando w.r.t. a
version with all our modifications but without the actual random-
ization.

Finally, we evaluated selfrando with modern
JavaScript benchmarks that focus on realistic web work-
loads: JetStream 1.1., Massive and Octane 2.0 [1–3]. As
a baseline, we used a version of TB with the same mod-
ifications we need for selfrando (see Section 5.3), but
without the randomization. Since selfrando does not pro-
tect JIT-compiled code, we disabled the JIT compiler by
setting the Tor Security Slider to Medium-High. Fig-
ure 7 reports the results. Each benchmark produces a
score (higher scores are better) and we report the rela-
tive decrease on the score. The geometric mean of the
overheads is 2.02%, while the worst overhead is 2.5%.

Our measurements confirm that selfrando can be in-
tegrated in real-world applications with low overhead.

5.3 Compatibility

Selfrando was optimized to protect the TB which is
built with GCC. However, we built several other Linux
programs such as GNU Bash 4.3, GNU less 458, Ng-
inx 1.8.0, Socat 1.7.3.0 and Thttpd 2.26. We tested each
of them using application-specific workloads, such as
serving files and running shell scripts, and we did not
encounter any problem.

To demonstrate compatibility with other compilers
we decided to build Chromium [9]. We chose Chromium
because this project has a large and complex code
base, and uses Clang [47] as default compiler. Like
with TB, we had to resort to the libc heap allocator,
as Chromium’s default heap allocator relies heavily on
Thread-Local Storage (TLS) and, hence, is not fully
compatible with selfrando. However, after changing the
heap allocator we successfully built and ran Chromium.

Both browsers implement cryptography using low-
level code that embeds data in the code segment. This
produces unexpected results when the data is moved



Selfrando: Securing the Tor Browser against De-anonymization Exploits 465

along with the functions and the alignment is not pre-
served. For Firefox, we disabled the low-level implemen-
tation and we used the high-level one. For Chromium,
there was no easy way to disable the alignment-sensitive
code and we had to preserve the four least significant
bits of the addresses during the randomization (see Sec-
tion 4.3).

To ensure selfrando did not break any functionality
we tested both browsers with popular websites4 and we
did not encounter any problems.

5.4 Including selfrando in the Tor Browser

The Tor Project is experimenting with a number of dif-
ferent tools to produce hardened builds of TB [56]. We
worked closely with their developers in order to make it
easy to integrate selfrando in TB. Selfrando was added to
the nightly hardened builds released and May 13, 2016
or later [45]. They plan to release a hardened version
that includes selfrando and to evaluate the inclusion of
selfrando in the normal version.

6 Discussion
Privacy Implications
Load-time code randomization effectively creates a
unique code layout for each TB session. Theoretically,
an adversary with the ability to read memory can ex-
ploit this to create a unique fingerprint to identify the
user across different websites.

However, we argue that modern Web technologies
(like JavaScript) by themselves can be exploited to leak
information to identify users across different websites.
Moreover, even without selfrando, an attacker that can
read the memory or leak some pointers can fingerprint
a browsing session in a number of different ways. ASLR
creates code diversity because the binary and the li-
braries are loaded at different addresses. ASLR also af-
fects the allocation of dynamic data structures such as
the heap, stack and data within the heap. The allo-
cation of these data structures is highly dependent on
the usage of the browser, and hence, it is very likely
that the disclosure of heap addresses is already enough
to identify users. Additionally, a potential fingerprint
of the randomized code is only valid for one browsing

4 To get a representative set, we selected the Alexa Top 100
sites (http://www.alexa.com/topsites) of November 2015.

session; after a browser restart, the code layout is ran-
domized differently. Finally, selfrando is compatible with
XoM [7, 12, 20, 34] which prevents reading memory that
contains code in the first place.

Hence, our randomization scheme does not increase
the risk of fingerprinting.

System libraries
While software protected by selfrando works smoothly
with unprotected libraries (and protected libraries work
smoothly with unprotected programs), the security
guarantees provided by selfrando are obviously limited
to software that was re-built with selfrando. The TB in-
cludes most needed libraries, and hence, is not affected
by this.

Future Work
Our current implementation focuses on applying self-
rando to the TB. We are currently working on improving
operating system specific features, such as the support
for thread-local storage (TLS). TLS is heavily used in
Firefox’s default heap allocator jemalloc, however, it is
possible to build the TB using the default heap allocator
provided by libc instead, which does not rely on TLS.
In fact, the TB developers expressed their desire to use
a different allocator as well [56].

7 Related work
Run-time defenses usually rely on either memory ran-
domization or integrity checks to prevent vulnerability
exploitation.

7.1 Randomization-based defenses

We refer to the SoK paper by Larsen et al. [46] for
a thorough analysis of the proposed software diversity
tools and limit our discussion to recent works which are
relevant to our purposes.

XIFER by Davi et al. [22] is a load-time fine-grained
randomization tool that does not require access to the
source code or offline analyses. However, its processing
speed (< 0.7 MB/s) makes it unsuitable for complex
applications that need to be loaded quickly.

Giuffrida et al. [35] proposed a compiler-based pe-
riodic re-randomization strategy for microkernels; this

http://www.alexa.com/topsites


Selfrando: Securing the Tor Browser against De-anonymization Exploits 466

strategy would require end users to compile the TB
locally on their system which is impractical for users
with low end systems and would significantly increase
the download size of the TB. Homescu et al. [42] built
a compile-time randomization approach that scales to
large applications such as the TB but requires that each
user download a unique copy of the browser. The ap-
proaches by Giuffrida et al. and Homescu et al. both
require a heavily customized compiler and do not work
with the standard build tools for Linux and Windows.

Instruction Location Randomization (ILR) by Hiser
et al. [40] rewrites binaries in a new randomized encod-
ing that is interpreted by a virtual machine with a per-
formance overhead of about 15%. Unlike our approach,
ILR is incompatible with just-in-time compiled code.

Binary stirring by Wartell et al. [77] processes bina-
ries at install time by disassembling them and adding a
load-time component; it also needs a run-time compo-
nent due to imperfect disassembly. It is not suitable for
our purposes since it relies on a commercial disassembler
that cannot be bundled with free software. Additionally,
performing additional processing at installation time in-
validates the code signature of a signed program.

Marlin by Gupta et al. [38] also randomizes binaries
at load time. Unlike binary stirring, Marlin does not
contain a runtime-component to detect and compensate
for disassembly errors. While the omission of a runtime
component lowers overheads in time and space, Marlin is
limited to simple ELF binaries that disassemble without
errors.

A recent patch submitted to OpenBSD [25] random-
izes the layout of the C library during system boot. In
particular, the patch permutes the linking order of each
translation unit. This shuffles symbols (e.g. functions)
relative to symbols defined in other files but does not
change the order of symbols defined in the same trans-
lation unit. The OpenBSD approach therefore adds less
entropy than selfrando which shuffles each function in-
dependently no matter what translation unit defines
it. Moreover, selfrando generates a different layout for
each application each time it launches, preventing the
attacker from leveraging a vulnerability in one applica-
tion to disclose the layout of the library in a different
application on the same system.

7.2 Leakage-resilient diversity approaches

Unfortunately, security tools based solely on random-
ization are vulnerable to attacks aimed at disclosing the
pointers to code pages. Snow et al. [66] showed that, if

the attackers can read arbitrary memory pages through
a vulnerability, they can recursively scan the memory,
find other code pages, disassemble them and craft an
ad-hoc ROP attack (JIT-ROP). Bittau et al. [8] showed
that it is possible to perform a similar attack even with-
out a complete memory read vulnerability, just by ob-
serving whether the program crashes for a particular
input (this particular attack would not work if the pro-
gram randomizes itself for each run).

Thus, even fine-grained randomization does not pro-
vide complete leakage resilience on its own. This has
motivated numerous papers that combine memory ran-
domization techniques with integrity checks (such as
execute-only memory) to provide comprehensive pro-
tection.

Execute-only memory on x86 processors is diffi-
cult to achieve because read permissions are implicitly
granted to executable pages. To do so, XnR by Backes
et al. [7] marks all pages not present and inspects every
page reference inside the operating system page-fault
handler. HideM by Gionta et al. [34] uses a particu-
lar TLB implementation available in certain processors.
Readactor by Crane et al. [20] uses a lightweight hyper-
visor in order to enable the extended page tables fea-
ture in modern x86 processors and enforce execute-only
memory in hardware. LR2 by Braden et al. [12] uses a
software-only approach based on load masking.

Many of these tools include randomization to pro-
vide comprehensive attack resilience; most implementa-
tions randomize the code at compile time. These tools
could be made more practical by using selfrando to sim-
plify distribution without sacrificing security.

7.3 Integrity-based defenses

Control-flow integrity (CFI) [4, 5] prevents control flow
hijacking by only allowing jumps and calls at run-time
that are present in the source. Implementing CFI with
acceptable performance overhead on commodity hard-
ware is hard; thus, many CFI implementations trade
coarse-grained CFI enforcement for better performance.

Most CFI implementations do not rely on random-
ization, so an attacker can exploit a coarse-grained CFI
policy by carefully constructing a malicious payload of-
fline and then using it [13, 23, 36, 37]

Finally, Code-Pointer Integrity (CPI) aims to pre-
vent pointer hijacking by storing code pointers, pointers
to code pointers etc. in a safe region; all accesses to the
safe region are instrumented to ensure the integrity of
the pointers. Performance overhead is relatively small



Selfrando: Securing the Tor Browser against De-anonymization Exploits 467

because CPI only needs to instrument a subset of mem-
ory operations. The critical issue is the protection of the
safe region; on 64-bit Intel processors, segmentation is
not available, thus CPI is forced to use information hid-
ing. Unfortunately, the most efficient implementations
of this defense can also be bypassed [28].

8 Conclusions
The most widely used and privacy-sensitive programs
have large code bases which makes it virtually impossi-
ble to ensure that they contain no vulnerabilities. Many
exploit mitigations have been proposed to prevent at-
tacks, however no existing tool has the performance and
deployability properties that are needed for complex but
user-friendly software such as the Tor Browser.

We have introduced selfrando, a fast and practical
load-time randomization tool. It has negligible run-time
overhead, a perfectly acceptable load-time overhead,
and it requires no changes to protect the Tor Browser.

Moreover, selfrando can be combined with integrity
techniques such as execute-only memory to further se-
cure the Tor Browser and virtually any other C/C++

application.

Acknowledgments
This work was supported in part by the German Sci-
ence Foundation (project S2, CRC 1119 CROSSING),
the European Union’s Seventh Framework Programme
(609611, PRACTICE), and the German Federal Min-
istry of Education and Research within CRISP.

This material is based upon work partially sup-
ported by the Defense Advanced Research Projects
Agency (DARPA) under contracts FA8750-15-C-0124,
FA8750-15-C-0085, and FA8750-10-C-0237 and by the
National Science Foundation under award number IIP-
1520552.

Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA),
its Contracting Agents, the National Science Founda-
tion, or any other agency of the U.S. Government.

References
[1] Jetstream 1.1. http://browserbench.org/JetStream/.
[2] Massive: the asm.js benchmark. https://kripken.github.io/

Massive/.
[3] Octane 2.0. http://chromium.github.io/octane/.
[4] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-

flow integrity. In ACM SIGSAC Conference on Computer
and Communications Security, 2005.

[5] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-
flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information System Security,
13, 2009.

[6] Aleph One. Smashing the stack for fun and profit. Phrack
Magazine, 49, 2000.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger,
and J. Pewny. You can run but you can’t read: Preventing
disclosure exploits in executable code. In ACM SIGSAC
Conference on Computer and Communications Security,
2014.

[8] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières, and
D. Boneh. Hacking blind. In 35th IEEE Symposium on
Security and Privacy, 2014.

[9] Black Duck Software, Inc. Chromium project on Open Hub.
https://www.openhub.net/p/chrome, 2014.

[10] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
In 6th ACM Symposium on Information, Computer and
Communications Security, 2011.

[11] E. Bosman and H. Bos. Framing signals—a return to
portable shellcode. In 35th IEEE Symposium on Security
and Privacy, 2014.

[12] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, and A.-R. Sadeghi. Leakage-resilient layout
randomization for mobile devices. In 23rd Annual Network
and Distributed System Security Symposium, 2016.

[13] N. Carlini and D. Wagner. ROP is still dangerous: Breaking
modern defenses. In 23rd USENIX Security Symposium,
2014.

[14] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross. Control-flow bending: On the effectiveness of
control-flow integrity. In 24th USENIX Security Sympo-
sium, 2015.

[15] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented program-
ming without returns. In ACM SIGSAC Conference on
Computer and Communications Security, 2010.

[16] X. Chen. ASLR bypass apocalypse in recent zero-day
exploits. http://www.fireeye.com/blog/technical/cyber-
exploits/2013/10/aslr-bypass-apocalypse- in- lately-zero-
day-exploits.html, 2013.

[17] F. B. Cohen. Operating system protection through program
evolution. Computers & Security, 12, 1993.

[18] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In 8th USENIX Security Sym-
posium, 1998.

http://browserbench.org/JetStream/
https://kripken.github.io/Massive/
https://kripken.github.io/Massive/
http://chromium.github.io/octane/
https://www.openhub.net/p/chrome
http://www.fireeye.com/blog/technical/cyber-exploits/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/10/aslr-bypass-apocalypse-in-lately-zero-day-exploits.html


Selfrando: Securing the Tor Browser against De-anonymization Exploits 468

[19] J. Cox. Confirmed: Carnegie Mellon University attacked
Tor, was subpoenaed by Feds. http://motherboard.vice.
com/read/carnegie-mellon-university- attacked- tor-was-
subpoenaed-by-feds, 2016.

[20] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readactor:
Practical code randomization resilient to memory disclo-
sure. In 36th IEEE Symposium on Security and Privacy,
2015.

[21] S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz.
It’s a TRaP: Table randomization and protection against
function-reuse attacks. In ACM SIGSAC Conference on
Computer and Communications Security, 2015.

[22] L. Davi, A. Dmitrienko, S. Nürnberger, and A. Sadeghi.
Gadge me if you can: secure and efficient ad-hoc
instruction-level randomization for x86 and ARM. In 8th
ACM Symposium on Information, Computer and Commu-
nications Security, 2013.

[23] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitch-
ing the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In 23rd USENIX Secu-
rity Symposium, 2014.

[24] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code randomization resilient to
(Just-In-Time) return-oriented programming. In 22nd An-
nual Network and Distributed System Security Symposium,
2015.

[25] T. de Raadt. openbsd-tech — Anti-ROP mechanism
in libc. https : / /marc . info / ?l= openbsd - tech&m=
146159002802803&w=2, 2016.

[26] R. Dingledine. Tor security advisory: "relay early" traffic
confirmation attack. https://blog.torproject.org/blog/tor-
security-advisory-relay-early-traffic-confirmation-attack/.

[27] R. Dingledine. Tor security advisory: Old tor browser bun-
dles vulnerable. https://lists.torproject.org/pipermail/tor-
announce/2013-August/000089.html, 2013.

[28] I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and
H. Okhravi. Missing the point(er): On the effectiveness of
code pointer integrity. In 36th IEEE Symposium on Secu-
rity and Privacy, 2015.

[29] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control jujutsu:
On the weaknesses of fine-grained control flow integrity. In
ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015.

[30] S. Forrest, A. Somayaji, and D. H. Ackley. Building di-
verse computer systems. In 6th Workshop on Hot Topics
in Operating Systems, 1997.

[31] F. S. Foundation. Gcc manual — § 3.10, options that con-
trol optimization. https://gcc.gnu.org/onlinedocs/gcc-5.
2.0/gcc/Optimize-Options.html#index-ffunction-sections-
1103, 2015.

[32] M. Franz. E unibus pluram: Massive-scale software diver-
sity as a defense mechanism. In Proceedings of the 2010
Workshop on New Security Paradigms, NSPW ’10, 2010.

[33] G. Fresi Roglia, L. Martignoni, R. Paleari, and D. Bruschi.
Surgically returning to randomized lib(c). In 25th Annual
Computer Security Applications Conference, 2009.

[34] J. Gionta, W. Enck, and P. Ning. HideM: Protecting the
contents of userspace memory in the face of disclosure vul-
nerabilities. In 5th ACM Conference on Data and Appli-
cation Security and Privacy, 2015.

[35] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained
address space randomization. In 21st USENIX Security
Symposium, 2012.

[36] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In 35th
IEEE Symposium on Security and Privacy, 2014.

[37] E. Göktas, E. Athanasopoulos, M. Polychronakis, H. Bos,
and G. Portokalidis. Size does matter: Why using gadget-
chain length to prevent code-reuse attacks is hard. In 23rd
USENIX Security Symposium, 2014.

[38] A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino.
Marlin: A fine grained randomization approach to defend
against ROP attacks. In Network and System Security.
2013.

[39] D. Herrmann, R. Wendolsky, and H. Federrath. Website fin-
gerprinting: Attacking popular privacy enhancing technolo-
gies with the multinomial naïve-bayes classifier. In ACM
Workshop on Cloud Computing Security, 2009.

[40] J. Hiser, A. Nguyen, M. Co, M. Hall, and J. Davidson.
ILR: Where’d my gadgets go. In 33rd IEEE Symposium
on Security and Privacy, 2012.

[41] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz. Profile-guided automatic software diversity. In
IEEE/ACM International Symposium on Code Generation
and Optimization, 2013.

[42] A. Homescu, T. Jackson, S. Crane, S. Brunthaler,
P. Larsen, and M. Franz. Large-scale automated software
diversity—program evolution redux. Dependable and Se-
cure Computing, IEEE Transactions on, 2015.

[43] Itanium informal industry coalition. Itanium C++ ABI:
Member pointers. https://mentorembedded.github.io/cxx-
abi/abi.html#member-pointers, 1999-2015.

[44] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address
space layout permutation (ASLP): towards fine-grained
randomization of commodity software. In 22nd Annual
Computer Security Applications Conference, 2006.

[45] G. Koppen. Include selfrando patches into our hardened
builds. https://trac.torproject.org/projects/tor/ticket/
17406, 2015.

[46] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK:
Automated software diversity. In 35th IEEE Symposium
on Security and Privacy, 2014.

[47] C. Lattner and V. S. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
IEEE/ACM International Symposium on Code Generation
and Optimization, 2004.

[48] C. Liebchen, M. Negro, P. Larsen, L. Davi, A.-R. Sadeghi,
S. Crane, M. Qunaibit, M. Franz, and M. Conti. Losing
control: On the effectiveness of control-flow integrity under
stack attacks. In ACM SIGSAC Conference on Computer
and Communications Security, 2015.

[49] Microsoft. Data execution prevention (DEP). http://
support.microsoft.com/kb/875352/EN-US/, 2006.

[50] Microsoft. Exploitation Trends. Microsoft Security Intel-
ligence Report, 16, 2013.

http://motherboard.vice.com/read/carnegie-mellon-university-attacked-tor-was-subpoenaed-by-feds
http://motherboard.vice.com/read/carnegie-mellon-university-attacked-tor-was-subpoenaed-by-feds
http://motherboard.vice.com/read/carnegie-mellon-university-attacked-tor-was-subpoenaed-by-feds
https://marc.info/?l=openbsd-tech&m=146159002802803&w=2
https://marc.info/?l=openbsd-tech&m=146159002802803&w=2
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://lists.torproject.org/pipermail/tor-announce/2013-August/000089.html
https://lists.torproject.org/pipermail/tor-announce/2013-August/000089.html
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Optimize-Options.html#index-ffunction-sections-1103
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Optimize-Options.html#index-ffunction-sections-1103
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc/Optimize-Options.html#index-ffunction-sections-1103
https://mentorembedded.github.io/cxx-abi/abi.html#member-pointers
https://mentorembedded.github.io/cxx-abi/abi.html#member-pointers
https://trac.torproject.org/projects/tor/ticket/17406
https://trac.torproject.org/projects/tor/ticket/17406
http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/


Selfrando: Securing the Tor Browser against De-anonymization Exploits 469

[51] S. Nagy. Address sanitizer local root. http://seclists.org/
oss-sec/2016/q1/363, 2016.

[52] Nergal. The advanced return-into-lib(c) exploits: PaX case
study. Phrack Magazine, 11, 2001.

[53] G. Owenson. Analysis of the FBI Tor malware. http://
blog.owenson.me/analysis-of-the-fbi-tor-malware/, 2013.

[54] PaX Team. Homepage of The PaX Team, 2001. http:
//pax.grsecurity.net.

[55] M. Perry. Deterministic builds part one: Cyberwar
and global compromise. https ://blog.torproject .org/
blog/deterministic-builds-part-one-cyberwar-and-global-
compromise, 2013.

[56] M. Perry. iSEC partners conducts Tor Browser harden-
ing study. https://blog.torproject.org/blog/isec-partners-
conducts-tor-browser-hardening-study, 2014.

[57] K. Poulsen. FBI admits it controlled Tor servers behind
mass malware attack. https://www.wired.com/2013/09/
freedom-hosting-fbi/, 2013.

[58] T. Ritter and A. Grant. iSEC Partners Final Report —
Tor Project Tor Browser Bundle. https://github.com/
iSECPartners / publications / tree /master / reports /Tor%
20Browser%20Bundle, 2014.

[59] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse attacks in
C++ applications. In 36th IEEE Symposium on Security
and Privacy, 2015.

[60] J. Seibert, H. Okhravi, and E. Söderström. Information
leaks without memory disclosures: Remote side channel at-
tacks on diversified code. In ACM SIGSAC Conference on
Computer and Communications Security, 2014.

[61] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A fast address sanity checker. In
USENIX Annual Technical Conference, 2012.

[62] F. J. Serna. The info leak era on software exploitation. In
Blackhat USA, 2012.

[63] H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2007.

[64] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space random-
ization. In ACM SIGSAC Conference on Computer and
Communications Security, 2004.

[65] sinn3r. Here’s that FBI Firefox exploit for you (cve-
2013-1690). https://community.rapid7.com/community/
metasploit / blog / 2013 / 08 / 07 / heres - that - fbi - firefox -
exploit-for-you-cve-2013-1690, 2013.

[66] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A. Sadeghi. Just-in-time code reuse: On
the effectiveness of fine-grained address space layout ran-
domization. In 34th IEEE Symposium on Security and
Privacy, 2013.

[67] A. Sotirov. Heap Feng Shui in JavaScript. In Blackhat
Europe, 2007.

[68] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter. Breaking the memory se-
crecy assumption. In 2nd European Workshop on System
Security, 2009.

[69] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal
war in memory. In 34th IEEE Symposium on Security and
Privacy, 2013.

[70] The Clang Team. Clang 3.8 documentation SafeStack.
http://clang.llvm.org/docs/SafeStack.html, 2015.

[71] The Firefox Developers. Mozilla foundation security ad-
visory 2013-53: Execution of unmapped memory through
onreadystatechange event. https://www.mozilla.org/en-
US/security/advisories/mfsa2013-53/, 2013.

[72] The Gitian developers. Gitian: a secure software distribu-
tion method. https://gitian.org/.

[73] The Tor Project. The tor browser. https://www.torproject.
org/projects/torbrowser.html.

[74] The Washington Post. Meet the woman in charge of the
FBI’s most controversial high-tech tools. http://wapo.st/
1m7UMBQ, 2015.

[75] C. Tice. Improving function pointer security for vir-
tual method dispathes. https : / / gcc . gnu . org /wiki /
cauldron2012?action=AttachFile&do=get&target=cmtice.
pdf, 2012.

[76] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. W. Freeh,
and P. Ning. On the expressiveness of return-into-libc at-
tacks. In 14th International Symposium on Research in
Attacks, Intrusions and Defenses, 2011.

[77] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: self-randomizing instruction addresses of legacy
x86 binary code. In ACM SIGSAC Conference on Com-
puter and Communications Security, 2012.

[78] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C.
Knight, and A. Nguyen-Tuong. Security through diversity:
Leveraging virtual machine technology. IEEE Security Pri-
vacy, 2009.

[79] Zerodium. Our exploit acquisition platform. https://www.
zerodium.com/program.html, 2015.

A Overview of the exploit used
by the FBI in 2013

In 2013, the FBI compromised a number of servers used
by Tor hidden services and used them to serve an exploit
to de-anonymize users of the Tor network [57]. When the
user visited one of the booby-trapped pages with the Tor
Browser, the exploit abused an use-after-free vulnerabil-
ity of Firefox in order to enable arbitrary code execu-
tion [65]. The main payload of the exploit collected the
MAC address and the host name from the victim ma-
chine and sent the data to an attacker-controlled web
server, bypassing Tor [53]. That message also included a
unique ID provided by the booby-trapped page in order
to correlate a specific user to a specific visit. The at-
tacker then knew the public IP address, MAC address
and host name of every user that visited the booby-
trapped page.

http://seclists.org/oss-sec/2016/q1/363
http://seclists.org/oss-sec/2016/q1/363
http://blog.owenson.me/analysis-of-the-fbi-tor-malware/
http://blog.owenson.me/analysis-of-the-fbi-tor-malware/
http://pax.grsecurity.net
http://pax.grsecurity.net
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/deterministic-builds-part-one-cyberwar-and-global-compromise
https://blog.torproject.org/blog/isec-partners-conducts-tor-browser-hardening-study
https://blog.torproject.org/blog/isec-partners-conducts-tor-browser-hardening-study
https://www.wired.com/2013/09/freedom-hosting-fbi/
https://www.wired.com/2013/09/freedom-hosting-fbi/
https://github.com/iSECPartners/publications/tree/master/reports/Tor%20Browser%20Bundle
https://github.com/iSECPartners/publications/tree/master/reports/Tor%20Browser%20Bundle
https://github.com/iSECPartners/publications/tree/master/reports/Tor%20Browser%20Bundle
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
http://clang.llvm.org/docs/SafeStack.html
https://www.mozilla.org/en-US/security/advisories/mfsa2013-53/
https://www.mozilla.org/en-US/security/advisories/mfsa2013-53/
https://gitian.org/
https://www.torproject.org/projects/torbrowser.html
https://www.torproject.org/projects/torbrowser.html
http://wapo.st/1m7UMBQ
http://wapo.st/1m7UMBQ
https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile&do=get&target=cmtice.pdf
https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile&do=get&target=cmtice.pdf
https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile&do=get&target=cmtice.pdf
https://www.zerodium.com/program.html
https://www.zerodium.com/program.html

	Selfrando: Securing the Tor Browser against De-anonymization Exploits
	1 Introduction
	2 Background
	2.1 Exploiting Memory Corruption
	2.2 Preventing Code-Reuse Exploits
	2.3 Trust in Privacy-preserving Software

	3 Selfrando
	3.1 Design Objectives
	3.2 Threat Model
	3.3 Selfrando Design

	4 Implementation
	4.1 Extracting TRaP Information
	4.2 Embedding TRaP information
	4.3 Load-time Function Permutation
	4.4 Stack Unwinding
	4.5 AddressSanitizer

	5 Experimental Evaluation
	5.1 Security Analysis
	5.2 Performance Overhead
	5.2.1 Load-time Overhead
	5.2.2 Run-time Overhead

	5.3 Compatibility
	5.4 Including selfrando in the Tor Browser

	6 Discussion
	7 Related work
	7.1 Randomization-based defenses
	7.2 Leakage-resilient diversity approaches
	7.3 Integrity-based defenses

	8 Conclusions
	A Overview of the exploit used by the FBI in 2013


