
Welcome to ICS 121

• Administration, Syllabus

• Scope of Software Engineering

• Software Engineering Principles

Software Engineering =

study of software process, 
development principles, 
techniques and notations;

production of quality software, 
delivered on time, within budget,
satisfying users' needs



Topic 1
Intro/Principles

2

ICS 121

Administration

• Professor
— David Redmiles

• Required
—Schach: Classical and Object-Oriented Software Engineering

— Brooks: The Mythical Man-Month

— Fowler: UML Distilled

— occasional foundation papers, news clippings, etc.

• Other References
— Ghezzi:Fundamentals of Software Engineering

— Ian Sommerville: Software Engineering

• Prerequisites
— Lower-division writing

— ICS 52 (Grade C or better)

— Math 6A(or ICS 6A)-B-C(or Math 3A)

• Teaching Assistant

— Jaya Vaidyanathan
— Ian Lim



Topic 1
Intro/Principles

3

ICS 121

Gradin g

• Problem Analysis (5%)
– questions you need to have answered before continuing with project

• Mockup (10%)
– end user scenario

• Lifecycle Considerations and Validation (5%)
– anticipated changes, subset implementations, and validation plan

• Requirements (15%)
– REBUS requirements specification

• Design (15%)
– object-oriented

• Midterm (15%)

• Final (20%)

• Homework (15%)



Topic 1
Intro/Principles

4

ICS 121

Syllabus

• Introduction to Software Engineering
– scope of Software Engineering
– principles of Software Engineering

• Software Nature and Qualities
• Software Production and Difficulties
• Software Lifecycle
• Lifecycle Validation and Testing Principles
• Requirements

– requirements process
– requirements analysis and specification
– system test plan
– process
– prototyping



Topic 1
Intro/Principles

5

ICS 121

Syllabus

• Design
– general design process
– design principles
– integration test plan
– design methods

» object-oriented
– reuse



Topic 1
Intro/Principles

6

ICS 121

Syllabus

• Formal (Module Interface) Specifications
– formal methods process
– specification languages

» axiomatic specifications
» state machine specifications
» abstract model specifications
» algebraic specifications

– module test plan

• Software Testing, Verification and Validation
– verification vs. validation
– testing process
– unit testing
– integration testing
– system  testing
– verification and other analysis techniques
– end user testing



Topic 1
Intro/Principles

7

ICS 121

Syllabus

• Software Maintenance

– reverse- and re-engineering

• Software Management and Planning

– scheduling and cost estimation

– management structure and team organization

– configuration management

• Software Process Models

• Software Tools and Environments



Topic 1
Intro/Principles

8

ICS 121

Software En gineerin g Scope

• Software is typically delivered late, over budget,
and faulty

• Software engineers require a broad range of skills
applied to all phases of software production

– Mathematics and Computer Science

– Economics, Management, Psychology

• Scope of Software Engineering
– Historical Aspects

–  Economic Aspects

– Maintenance Aspects

– Specification and Design Aspects

– Team Programming Aspects

– Verification and Validation Aspects



Topic 1
Intro/Principles

9

ICS 121

Historical As pects

• NATO conference, 1968: coined term “software
engineering”

– software production should use established engineering principles
to solve the software crisis

• DeRemer & Kron, 1976: PITL – “Programming In The
Large”

• Parnas, 1987: “multi-person construction of multi-
version software”

• Software engineering discipline is very young
– techniques to specify properties of product independent of design

are needed

– formal analysis tools are critical

– certain principles are essential

– many techniques and notations



Topic 1
Intro/Principles

10

ICS 121

Economic and Maintenance As pects

• Software Production =  development + maintenance

• Quicker development is not always preferable
– may lead to software that is difficult to maintain

– resulting in higher long-term costs

• Maintenance costs are often over 50% of overall costs
during the lifecycle of a software product

– corrective maintenance (17.5%)

– perfective maintenance (60.5%)

– adaptive maintenance (18%)

• Real world is constantly changing
– all software products undergo maintenance to account for change



Topic 1
Intro/Principles

11

ICS 121

Maintenance Costs

                

Maintenance 67%

Integration
6%

Design
6%

Module
coding
5%

Module
testing
7%

Problem Def
3%

Requirements
4%

Planning
2%



Topic 1
Intro/Principles

12

ICS 121

Requirements and Desi gn As pects
Verification and Validation As pects
• The longer a fault exists in software

– the more costly it is to detect and correct

– the less likely it is to be fixed correctly

• 60-70% of all faults detected in large-scale software
projects are introduced in requirements and design

• Faults must be found early
– faults must be found early through specification and design validation

• Verification and validation must be done throughout the
lifecycle

– validate first description

– verify current phase with respect to previous

– evaluate testability at each phase

– develop test plans based on each phase



Topic 1
Intro/Principles

13

ICS 121

Specification and Desi gn As pects –
relative cost of fixin g an fault

Requirements Specificaiton Planning Design Impelementation Integration Maintenance

200

30

10

4321



Topic 1
Intro/Principles

14

ICS 121

Team Pro grammin g Aspects

• Reduced hardware costs affords hardware that can run
large products – products too large for an individual to
develop

• Most software is produced by a team of software
engineers, not an individual

– Team programming leads to interface  problem between components
and communications problems between members

– Team programming requires good team organization to avoid excessive
conferences



Topic 1
Intro/Principles

15

ICS 121

Software En gineerin g Princi ples

– Deal with both process and product

– Applicable throughout lifecycle

– Need abstract descriptions of desirable properties

– Same principles as other engineering disciplines

Principles

methods and techniques

methodologies and tools

process and environments



Topic 1
Intro/Principles

16

ICS 121

Rigor and Formalit y

• Rigor is a necessary complement to creativity

• Rigor enhances understandability, improves
reliability, facilitates assessment, and controls cost

• Formality is the highest degree of rigor
– mathematically defined

• Engineering = sequence of well-defined, precisely-
stated, sound steps, which follow method or apply
technique based on some combination of

– theoretical results derived from formal model

– empirical adjustments for unmodeled phenomenon

– rules of thumb based on experience



Topic 1
Intro/Principles

17

ICS 121

Separation of Concerns

• Enables mastering of inherent complexity
• Allows concentration on individual aspects

– product features: functions, reliability, efficiency,
environment, user interface, etc.

– process features: development environment, team
organization, scheduling, methods,

– economics and management

• Concerns may be separated by
– time (process sequence)

– qualities (e.g., correctness vs. performance)

– views to be analyzed separately (data vs. control)

– components

• Leads to separation of responsibility



Topic 1
Intro/Principles

18

ICS 121

Modularit y and Decom position

• Complex system divided into modules
• Modular decomposition allows separation of

concerns in two phases

• Modularity manages complexity, fosters
reusability, and enhances understandability

– composibility vs. decomposibility
– high cohesion and low coupling

  aspects of modules in isolation

  overall characteristics of integrated system
bottom-up

top-down



Topic 1
Intro/Principles

19

ICS 121

Abstraction

• Identify important aspects and ignore details

• Abstraction depends on the purpose or view

• Models are abstractions of reality

• Abstraction permeates software development
– from requirements to code

– from natural language descriptions to mathematical models

– from products to process

• One specification but many realizations



Topic 1
Intro/Principles

20

ICS 121

Antici pation of Chan ge

• Constant change is inevitable in large-scale
software systems

– software repair & error elimination

– evolution of the application

• Identify likely changes and plan for change
– software requirements usually not entirely understood

– users and environments change

– also affects management of software process

• Maintenance is process of error correction and
modification to reflect changing requirements

– regression testing with maintenance

– configuration management of versions



Topic 1
Intro/Principles

21

ICS 121

Generalit y

• Focus on discoving more general problem than
the one at hand

– fosters potential reuse

– facilitates identification of OTS solution

• Trade-offs between initial costs vs. reuse savings

• General-purpose, OTS products are general trend
in application domains

– standard solutions to common problems



Topic 1
Intro/Principles

22

ICS 121

Incrementalit y

• Step-wise process with successively closer
approximations to desired goal

• Identify and “deliver” early subsets to gain early
feedback

– fosters controlled evolution

• Incremental concentration on required qualities

• Intermediate deliverables may be prototypes

• Requires careful configuration management and
documentation



Topic 1
Intro/Principles

23

ICS 121

Reliabilit y

• As software application pervades critical
systems, reliability is paramount

• Cost of failure exceeds cost of
development

• Reliability measures how well a system
provides expected service over time

– all service is not equal

– software reliability based entirely on development

– software does not degrade

Formal development methods lead to higher reliability

Formal analysis techniques are critical



Topic 1
Intro/Principles

24

ICS 121

Relationshi ps between Princi ples
Discussion

• formality and modularity

• formality and separation of concerns

• separation of concerns and modularity

• modularity and abstraction

• modularity and anticipation of change

• anticipation of change and generality

• abstraction and generality

• modularity and incrementality

• anticipation of change and incrementality

• generality and incrementality


